Pairing Based zkSNARKs

Carla Ràfols

September 2024

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

(zk)-SNARKs

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

(zk)-SNARKs

- We think of "practical" proofs as proofs of computational integrity;
- ZKPs reveal nothing about private inputs of the computation;
- (zk)SNARKs ((zk-)Succinct Non-Interactive Arguments of Knowledge) are short proofs, usually independent of computation size

$$|\pi_F| < |F|$$

How are many SNARKs built?

FRONTEND

Computation

Computation Representation

e.g. Arith. Circuit, Arith. Circuit with Lookups

program

model with restricted operations

 \rightarrow

 $\begin{array}{l} \textbf{Algebraic Relations} \\ \text{R1CS, Plonkish, CCS} \\ e.g.\textbf{A}, \textbf{B}, \textbf{C} \text{ s.t.} \\ \rightarrow \quad \vec{z} \text{ satisfies circuit iff} \\ \textbf{A}\vec{z} \circ \textbf{B}\vec{z} = \textbf{C}\vec{z} \end{array}$

Polynomial Relations

Univ or Multiv. e.g. t(X)|A(X)B(X) - C(X)

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Dac

How are many SNARKs built?

BACKEND

(Preprocessing) Polynomial IOP

SNARK

How are many SNARKs built?

BACKEND

Key Idea:: Checking Polynomial Identities at Random Points (or in an elliptic curve)
 Can be done succinctly with Polynomial Commitments.

ZK comes almost for free.

SNARKs for Proving Large Computations

Example of Practical Parameters:

• C circuit with 2^{20} multiplication gates over finite field of 255 bits;

What is a "good" SNARK

Performance measured in different parameters.

- Prover complexity/ Verifier complexity.
- Proof size
- Transparent Setup/Structured Reference String.
- Private vs Public Verification...
- Weaker/ Stronger Computational assumptions.

This talk:

■ *O*(*n* log *n*) prover, *O*(1) proof size, *O*(1)/*O*(log *n*) verification (preprocessing univariate PIOP, KZG Polynomial Commitment in pairing groups)

But recently many SNARKs,

■ O(n) prover, $O(\log n)$ proof size, $O(\log n)$ verification (preprocessing multivariate PIOP, sumcheck protocol)

Example: From Circuits to Algebraic Relations Rank 1 Constraint Systems

 $z_6 = x_3$

Statement: $C(1, x_1, x_2, w) = x_3$ for some w, \vec{x} public inputs.

Statement true \iff

$$\mathbf{A}\vec{z} \circ \mathbf{B}\vec{z} = \mathbf{C}\vec{z}$$
, and $\{z_1 = 1, z_2 = x_1, z_3 = x_2, z_6 = x_3\}$

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

From Circuit to Algebraic Relations, Takeaway

Statement: $C(1, x_1, x_2, w) = x_3$ for some w, \vec{x} public inputs.

- **Public Input Relations:** $\{z_1 = 1, z_2 = x_1, z_3 = x_2, z_6 = x_3\}$
- **2** Hadamard Product Relation: $\vec{a} \circ \vec{b} = \vec{c}$
- **3** Linear Relations: $\vec{a} = \mathbf{A}\vec{z}, \ \vec{b} = \mathbf{B}\vec{z}, \ \vec{c} = \mathbf{C}\vec{z}.$

- Matrices are public, part of the circuit description.
- They are sparse, but of dimension of the extended witness size (inputs + multiplicative gates).

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

From Algebraic Relations to Univariate Polynomials

Inner Product Relations and the Univariate Sumcheck

• $\mathcal{R} = \{r_0, \dots, r_{n-1}\} \subset \mathbb{F}_p^*$, multiplicative subgroup

$$\lambda_i(X) = \prod_{j \neq i} \frac{(X - r_j)}{(r_i - r_j)}, \qquad t(X) = \prod_j (X - r_j).$$

Algebraic Formulation	Polynomial Formulation
Vector $\vec{u} = (u_1, u_2)$	Poly $y(\mathbf{Y}) = \nabla^{n-1} y \lambda (\mathbf{Y}) = \vec{\lambda} (\mathbf{Y})^\top \vec{x}$
vector $y = (y_0,, y_{n-1})$	Poly. $y(\Lambda) = \sum_{i=0} y_i \Lambda_i(\Lambda) = \Lambda(\Lambda) y$
Public Input: \vec{z}, \vec{x} agree on l positions	$z(X) - x(X)$ is divisible by $t_l(X)$
Hadamard Product $ec{a}\circec{b}=ec{c}$	a(X)b(X) - c(X) is divisible by $t(X)$
	[Ben-Sasson et al. 18]
Inner product $\sigma = \vec{f} \cdot \vec{g}$	$\exists R(X), deg R(X) \leq n-2.$
	$t(X)$ divides $f(X)g(X) - n^{-1}\sigma - XR(X)$

From Algebraic Relations to Univariate Polynomials

Inner Product Relations and the Univariate Sumcheck

• $\mathcal{R} = \{r_0, \dots, r_{n-1}\} \subset \mathbb{F}_p^*$, multiplicative subgroup

$$\lambda_i(X) = \prod_{j \neq i} \frac{(X - r_j)}{(r_i - r_j)}, \qquad t(X) = \prod_j (X - r_j).$$

Algebraic Formulation	Polynomial Formulation
	\mathbf{D} (\mathbf{T}) \mathbf{D}^{n-1} (\mathbf{T}) $\mathbf{\vec{T}}$ (\mathbf{T})
Vector $y = (y_0,, y_{n-1})$	Poly. $y(X) = \sum_{i=0}^{n-1} y_i \lambda_i(X) = \lambda(X)^{\top} y$
Public Input: \vec{z}, \vec{x} agree on l positions	$z(X) - x(X)$ is divisible by $t_l(X)$
Hadamard Product $\vec{a} \circ \vec{b} = \vec{c}$	a(X)b(X) - c(X) is divisible by $t(X)$
	[Ben-Sasson et al. 18]
Inner product $\sigma = \vec{f} \cdot \vec{g}$	$\exists R(X), deg \ R(X) \leq n-2.$
	$t(X)$ divides $f(X)g(X) - n^{-1}\sigma - XR(X)$

We can immediately build a non-interactive IOP for any of these relations.

Example Hadamard Product Relation **PIOP**:

$$P \xrightarrow{a(x),b(x),c(x),h(x)} \bigvee$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Example Hadamard Product Relation **PIOP**:

$$P \xrightarrow{a(x),b(x),c(x),h(x)} \bigvee \\ \xrightarrow{a(x),b(x)-c(x)} \xrightarrow{?} h(x),t(x)$$

Proof System:

How to prove Many Linear Relations? SNARKs with Constant Proof Size

Statement: $\vec{y} = \mathbf{M}\vec{z}$.

 No efficient extension of the univariate sumcheck to prove many inner product relations.

Groth16,	Plonk, Permutation-based arguments M is a permutation	Marlin Reduce many to one relation and use inner product
QA-NIZK	$\vec{y} = \mathbf{M}\vec{z}$ iff	$\vec{y} = \mathbf{M} \vec{z} \Longrightarrow r^{\top} \cdot \vec{y} = (\vec{r}^{\top} \mathbf{M}) \vec{z},$
Arguments	$\prod (X + y_i) = \prod (X + z_i).$	\vec{r} sufficiently random

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QA-NIZK Arguments Groth16

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Motivation

■ To prove R1CS, we need to prove the linear relations:

$$\begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \end{pmatrix} \vec{z} \iff$$

$$\begin{pmatrix} a(X) = \vec{\lambda}(X)^{\top} \vec{a} \\ b(X) = \vec{\lambda}(X)^{\top} \vec{b} \\ c(X) = \vec{\lambda}(X)^{\top} \vec{c} \end{pmatrix} = \begin{pmatrix} \lambda(X)^{\top} \mathbf{A} \\ \lambda(X)^{\top} \mathbf{B} \\ \vec{\lambda}(X)^{\top} \mathbf{C} \end{pmatrix} \vec{z} = \begin{pmatrix} u_1(X) & \dots & u_m(X) \\ v_1(X) & \dots & v_m(X) \\ w_1(X) & \dots & w_m(X) \end{pmatrix} \vec{z}$$

In "Compiled"Protocol we need to prove:

$$\begin{pmatrix} a(\tau)\mathcal{P} \\ b(\tau)\mathcal{P} \\ c(\tau)\mathcal{P} \end{pmatrix} = \begin{pmatrix} u_1(\tau)\mathcal{P} & \dots & u_m(\tau)\mathcal{P} \\ v_1(\tau)\mathcal{P} & \dots & v_m(\tau)\mathcal{P} \\ w_1(\tau)\mathcal{P} & \dots & w_m(\tau)\mathcal{P} \end{pmatrix} \vec{z}$$

"Membership" of vector of \mathbb{G}^3 in column space of matrix $3 \times |m|$.

Hash Proof System [CraSho02]

Example:

$$\begin{bmatrix} \mathbf{M} \end{bmatrix} = \begin{pmatrix} \mathcal{P} \\ H \end{pmatrix} \qquad \text{Statement: } \begin{bmatrix} \vec{y} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} y_{1} \\ \begin{bmatrix} y \end{bmatrix}_{2} \end{pmatrix} = \begin{bmatrix} \mathbf{M} \end{bmatrix} w = \begin{pmatrix} w \mathcal{P} \\ w H \end{pmatrix}$$
$$\begin{bmatrix} \vec{k}^{\top} \mathbf{M} \end{bmatrix} = k_{1} P + k_{2} H \qquad \boldsymbol{\pi} = w(k_{1} P + k_{2} H)$$

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Hash Proof System [CraSho02]

Notation: $[a] := a\mathcal{P}$.

Completeness:

 $[\vec{k}^{\top}\mathbf{M}]\vec{w} = \vec{k}^{\top}[\mathbf{M}\vec{w}] = \vec{k}^{\top}\vec{y}.$

Hash Proof System [CraSho02]

Soundness:

If $\vec{y} \notin \text{Im}(\mathbf{M})$, $\vec{k}^{\top}[\vec{y}]$ information theoretically hidden! If designated verifier key is leaked, no soundnes!

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

QA-NIZK for Linear Spaces [LibPetJoyYun14,KiWeel15]

- Completeness, Zero-Knowledge: Unchanged.
- **Soundness**: Computational: unless the prover knows \vec{w} s.t $[\vec{y}] = [\mathbf{M}]\vec{w}$, it cannot compute $[\pi]$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

QA-NIZK Proof for Linear Spaces for R1CS¹

■ To prove R1CS, the "Compiled"Protocol needs to prove:

$$\begin{pmatrix} a(\tau)\mathcal{P} \\ b(\tau)\mathcal{P} \\ c(\tau)\mathcal{P} \end{pmatrix} = \begin{pmatrix} u_1(\tau)\mathcal{P} & \dots & u_m(\tau)\mathcal{P} \\ v_1(\tau)\mathcal{P} & \dots & v_m(\tau)\mathcal{P} \\ w_1(\tau)\mathcal{P} & \dots & w_m(\tau)\mathcal{P} \end{pmatrix} \vec{z},$$

i.e. "Membership" in column space of matrix $3 \times |m|$.

The SRS needs to include, among others:

$$[\mathbf{K}^{\top}\mathbf{M}] = \left(\frac{\beta}{\delta}, \frac{\alpha}{\delta}, \frac{1}{\delta}\right) \begin{pmatrix} u_1(\tau)\mathcal{P} & \dots & u_m(\tau)\mathcal{P} \\ v_1(\tau)\mathcal{P} & \dots & v_m(\tau)\mathcal{P} \\ w_1(\tau)\mathcal{P} & \dots & w_m(\tau)\mathcal{P} \end{pmatrix} = \left(\frac{\beta u_j(\tau) + \alpha v_j(\tau) + w_j(\tau)}{\delta}\right)_{j=1}^m.$$

• Security relies crucially on the fact that it is impossible to calculate $\mathbf{K}^{\top}\vec{y}$ if does not have a witness for $[\vec{y}] \in Col(\mathbf{M}) \Longrightarrow$ New key \mathbf{K} for every circuit!!

¹Our aim here is to present all techniques in the literature in a unified way, not an attribution of these techniques to the QA-NIZK literature. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle$

Groth16

- Combination of Hadamard Argument + QANIZK (in asymmetric bilinear groups) super compressed, using full power of unfalsifiable assumptions;
- SRS is:

$$\begin{aligned} &\alpha,\beta,\delta,\{\tau^i\}_{i=0}^{n-1},\{u_j(\tau)\beta+v_j(\tau)\alpha+w_j(\tau)\}_{j=0}^l \\ &\left\{\frac{u_j(\tau)\beta+v_j(\tau)\alpha+w_j(\tau)}{\delta}\right\}_{j=l+1}^m,\{x^it(\tau)/\delta\}_{i=0}^{n-2}, \end{aligned}$$

■ Prover cost: a few multiexponentiations of size O(|m.gates|), 7 FFT of size |m.gates| (O(|m.gates| log |m.gates|) field operations).

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

- Proof size 3 group elements, super efficient verification 3 pairings (independent of circuit size!)
- Trusted Setup is inherently circuit dependent.

Trusted Setups

Z. Wilcox (ZCash) on his knees destroying a computer after parameter generation.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

- SNARKs require a trusted party to generate the parameters.
- Knowledge of randomness to generate parameters: complete failure.
- Solution: distribute trust in a **Setup Ceremony**.
- Costly and complicated process.

SNARKs: Improving Parameter Generation [GroKohMalMeiMie18]

- Updatable Model: for soundness it suffices that one party is honest, and CRS can always be updated NI.
- In [BowGabMie17]: after a trusted and updatable setup phase to generate $(\tau \mathcal{P}_i, \tau^2 \mathcal{P}_i, \dots, \tau^q \mathcal{P}_i)$, i = 1, 2, circuit dependent setup of Groth16 is updatable.
- Universal and Updatable SNARKs: after a trusted and updatable setup phase to generate $(\tau \mathcal{P}_i, \tau^2 \mathcal{P}_i, \dots, \tau^q \mathcal{P}_i)$, i = 1, 2, a circuit dependent SRS that preprocesses the circuit is derived.

Marlin

Marlin: How to Prove Many Inner Product Relations

- Problem 1. No efficient extension of the univariate sumcheck to prove m inner product relations.
- **Solution 1.** Prove one sufficiently random relation:

Checking if $\vec{y} = \mathbf{M}\vec{z}$ vs Checking if $\vec{r}^{\top}\vec{y} = (\vec{r}^{\top}\mathbf{M}) \cdot \vec{z}$, where \vec{r} is sufficiently random, chosen by verifier!!

Problem 2 Although matrix M is public, a sublinear verifier cannot afford to sample a random vector in rowspace of M (since number of rows = O(|C|))

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution 2: Prover needs to show that $\vec{r}^{\top} \mathbf{M}$ is correct.

From Algebraic Relations to Polynomials

Reducing Many to One Relations

Given $\mathbf{M} \in \mathbb{F}^{n \times n}$, define the bivariate polynomial:

$$P(X,Y) = (\lambda_0(Y), \dots, \lambda_{n-1}(Y)) \mathbf{M} \begin{pmatrix} \lambda_0(X) \\ \vdots \\ \lambda_{n-1}(X) \end{pmatrix} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} m_{ij} \lambda_i(Y) \lambda_j(X)$$

Given random x, the vector

$$\vec{d} = (\lambda_0(x), \dots, \lambda_{n-1}(x))$$
 M

is a sufficiently random vector in the row span of \mathbf{M} .

The partial evaluation

$$D(X) = P(X, x) = \sum_{i=0}^{n-1} d_i \lambda_i(X) = (\lambda_0(x), \dots, \lambda_{n-1}(x)) \mathbf{M} \begin{pmatrix} \lambda_0(X) \\ \vdots \\ \lambda_{m-1}(X) \end{pmatrix}$$

is a polynomial encoding of \vec{d} in the Lagrange basis.

From Algebraic Relations to Polynomials

Sparse Encodings

The partial evaluation

$$D(X) = P(X, x) = \sum_{i=0}^{n-1} d_i \lambda_i(X) = (\lambda_0(x), \dots, \lambda_{n-1}(x)) \mathbf{M} \begin{pmatrix} \lambda_0(X) \\ \vdots \\ \lambda_{n-1}(X) \end{pmatrix}$$

is a polynomial encoding of \vec{d} in the Lagrange basis.

- The prover needs to show that D(X) is correct.
- Preprocessing M naively does not work, would mean quadratic SRS.
- Idea: in the preprocessing phase, polynomials col, row : $K \longrightarrow \{0, ..., n-1\}$ and val : $K \longrightarrow \mathbb{Z}_p$ are defined such that:

$$D(X) = \sum_{k \in K} \mathsf{val}(k) \lambda_{\mathsf{row}(k)}(x) \lambda_{\mathsf{col}(k)}(X)$$

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

where K is the number of non-zero entries of \mathbf{M} .

Summary

How to prove Many Linear Relations?

■ Statement: $\vec{y} = M\vec{z}$. ■ $\tilde{O}(n) = O(n \log_2 n)$, quasi linear

Groth16, ...

Plonk,... Permutation-based arguments M is a permutation

Spartan, Marlin Reduce many to one relation and use inner product

Trusted setup for each **A**, **B**, **C** Not universal! Prover: $\tilde{O}(|m.gates|)$

 $\vec{y} = \mathbf{M}\vec{z}$ iff $\prod(X + y_i) = \prod(X + z_i).$ Prover: $\tilde{O}(|total \ gates|)$

$$\vec{y} = \mathbf{M}\vec{z} \Longrightarrow (\vec{r}^{\top}\mathbf{M})\vec{z} = \vec{r}^{\top}\vec{z},$$

 \vec{r} sufficiently random Prover: $\tilde{O}(|sparsity matrix|)$

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Summary

How to prove Many Linear Relations?

■ Statement: $\vec{y} = M\vec{z}$. ■ $\tilde{O}(n) = O(n \log_2 n)$, quasi linear

Groth16, ...

Plonk,... Permutation-based arguments **M** is a permutation

Spartan, Marlin

Reduce many to one relation and use inner product

Trusted setup for
each A, B, C $\vec{y} = \mathbf{M}\vec{z}$ iff $\vec{y} = \mathbf{M}\vec{z} \Longrightarrow (\vec{r}^{\top}\mathbf{M})\vec{z} = \vec{r}^{\top}\vec{z}$,Not universal!
Prover: $\prod(X + y_i) = \prod(X + z_i)$. \vec{r} sufficiently random
Prover: $\tilde{O}(|sparsity matrix|)$

 $\tilde{O}(|m.gates|)$

Prover: $\tilde{O}(|total gates|)$

<u>Conclusion:</u> Choice of technique to prove linear constraints determines much of the characteristics of proof system:

- Plonk, Marlin need randomized checks, thus random oracles.
- Groth16 does not need ROs but circuit dependent setup;
- Plonk changes arithmetization so that checking permutations is enough;
- Different prover perfomance for each technique, free additive gates in Groth16.