
Pairing Based zkSNARKs

Carla Ràfols

September 2024

(zk)-SNARKs

(zk)-SNARKs

We think of ”practical” proofs as proofs of computational integrity;
ZKPs reveal nothing about private inputs of the computation;
(zk)SNARKs ((zk-)Succinct Non-Interactive Arguments of Knowledge)
are short proofs, usually independent of computation size

|πF| < |F|

How are many SNARKs built?

FRONTEND

Computation Computation Representation
e.g. Arith. Circuit, Arith. Circuit with Lookups

−→

program model with restricted operations

Algebraic Relations Polynomial Relations
R1CS, Plonkish, CCS

−→
e.g.A, B, C s.t.

z⃗ satisfies circuit iff
A⃗z ◦ B⃗z = C⃗z

→
Univ or Multiv.

e.g.
t(X)|A(X)B(X)− C(X)

How are many SNARKs built?

BACKEND

(Preprocessing) Polynomial IOP SNARK

−→
Polynomial
commitment

+
Fiat Shamir

SRS or CRS, π

How are many SNARKs built?

BACKEND

(Preprocessing) Polynomial IOP SNARK

−→
Polynomial
commitment

+
Fiat Shamir

SRS or CRS, π

Compressing Step
Cryptography

Comp. Security

Key Idea:: Checking Polynomial Identities at Random Points (or in an
elliptic curve)
Can be done succinctly with Polynomial Commitments.
ZK comes almost for free.

SNARKs for Proving Large Computations

Example of Practical Parameters:
C circuit with 220 multiplication gates over finite field of 255 bits;

What is a “good” SNARK
Performance measured in different parameters.

Peggy: (x, w) Victor: x

π

b ∈ {0, 1}

Prover complexity/ Verifier complexity.
Proof size
Transparent Setup/Structured Reference String.
Private vs Public Verification...
Weaker/ Stronger Computational assumptions.

This talk:
O(n log n) prover, O(1) proof size, O(1)/O(log n) verification
(preprocessing univariate PIOP, KZG Polynomial Commitment in pairing
groups)

But recently many SNARKs,
O(n) prover, O(log n) proof size, O(log n) verification (preprocessing
multivariate PIOP, sumcheck protocol)

Example: From Circuits to Algebraic Relations
Rank 1 Constraint Systems

Statement: C(1, x1, x2, w) = x3 for some w, x⃗ public inputs.

z1 = 1 z2 = x1 z3 = x2 z4

+ ×2 +

×

×

z6 = x3

z5

z5 = (2z2)(z3 + z4)

z6 = (1 + z2)z5

Two multiplication gates g1, g2

A⃗z =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 2 0 0 0 0
1 1 0 0 0 0




1

z2
z3
z4
z5
z6

 =


1

z2
z3
z4

2z2
1 + z2

 B⃗z =


1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0




1

z2
z3
z4
z5
z6

 =


1
1
1
1

z3 + z4
z5

 C⃗z =


z1
z2
z3
z4
z5
z6



Statement true ⇐⇒
A⃗z ◦ B⃗z = C⃗z, and {z1 = 1, z2 = x1, z3 = x2, z6 = x3}

From Circuit to Algebraic Relations, Takeaway

Statement: C(1, x1, x2, w) = x3 for some w, x⃗ public inputs.
1 Public Input Relations:
{z1 = 1, z2 = x1, z3 = x2, z6 = x3}

2 Hadamard Product Relation:
a⃗ ◦ b⃗ = c⃗

3 Linear Relations:
a⃗ = A⃗z, b⃗ = B⃗z, c⃗ = C⃗z.

Matrices are public, part of the circuit description.
They are sparse, but of dimension of the extended witness size (inputs +
multiplicative gates).

From Algebraic Relations to Univariate Polynomials
Inner Product Relations and the Univariate Sumcheck

R = {r0, . . . , rn−1} ⊂ F∗p, multiplicative subgroup

λi(X) = ∏
j ̸=i

(X− rj)

(ri − rj)
, t(X) = ∏

j
(X− rj).

Algebraic Formulation Polynomial Formulation

Vector y⃗ = (y0, . . . , yn−1) Poly. y(X) = ∑n−1
i=0 yiλi(X) = λ⃗(X)⊤ y⃗

Public Input: z⃗, x⃗ agree on l positions z(X)− x(X) is divisible by tl(X)

Hadamard Product a⃗ ◦ b⃗ = c⃗ a(X)b(X)− c(X) is divisible by t(X)

[Ben-Sasson et al. 18]
Inner product σ = f⃗ · g⃗ ∃R(X), deg R(X) ≤ n− 2.

t(X) divides f (X)g(X)− n−1σ− XR(X)

We can immediately build a non-interactive IOP for any of these relations.

From Algebraic Relations to Univariate Polynomials
Inner Product Relations and the Univariate Sumcheck

R = {r0, . . . , rn−1} ⊂ F∗p, multiplicative subgroup

λi(X) = ∏
j ̸=i

(X− rj)

(ri − rj)
, t(X) = ∏

j
(X− rj).

Algebraic Formulation Polynomial Formulation

Vector y⃗ = (y0, . . . , yn−1) Poly. y(X) = ∑n−1
i=0 yiλi(X) = λ⃗(X)⊤ y⃗

Public Input: z⃗, x⃗ agree on l positions z(X)− x(X) is divisible by tl(X)

Hadamard Product a⃗ ◦ b⃗ = c⃗ a(X)b(X)− c(X) is divisible by t(X)

[Ben-Sasson et al. 18]
Inner product σ = f⃗ · g⃗ ∃R(X), deg R(X) ≤ n− 2.

t(X) divides f (X)g(X)− n−1σ− XR(X)

We can immediately build a non-interactive IOP for any of these relations.

Example Hadamard Product Relation
PIOP:

Proof System:

Example Hadamard Product Relation
PIOP:

Proof System:

How to prove Many Linear Relations?
SNARKs with Constant Proof Size

Statement: y⃗ = Mz⃗.
No efficient extension of the univariate sumcheck to prove many inner
product relations.

Groth16, ...

QA-NIZK
Arguments

Plonk,...
Permutation-based
arguments
M is a permutation

y⃗ = Mz⃗ iff

∏(X + yi) = ∏(X + zi).

Marlin
Reduce many to one relation
and use inner product

y⃗ = Mz⃗ =⇒ r⊤ · y⃗ = (⃗r⊤M)⃗z,

r⃗ sufficiently random

QA-NIZK Arguments
Groth16

Motivation

To prove R1CS, we need to prove the linear relations:

a⃗
b⃗
c⃗

 =

A
B
C

 z⃗⇐⇒

a(X) = λ⃗(X)⊤ a⃗
b(X) = λ⃗(X)⊤⃗b
c(X) = λ⃗(X)⊤ c⃗

 =

λ(X)⊤A
λ(X)⊤B
λ⃗(X)⊤C

 z⃗ =

u1(X) . . . um(X)
v1(X) . . . vm(X)
w1(X) . . . wm(X)

 z⃗

In “Compiled”Protocol we need to prove:a(τ)P
b(τ)P
c(τ)P

 =

u1(τ)P . . . um(τ)P
v1(τ)P . . . vm(τ)P
w1(τ)P . . . wm(τ)P

 z⃗

”Membership” of vector of G3 in column space of matrix 3× |m|.

Hash Proof System [CraSho02]

Notation: [a] := aP .

P

[⃗y] : y⃗ = Mw⃗

VP

σ = (gk, [M], [⃗k⊤M])

k⃗← K

π
?
= k⃗⊤ [⃗y]

π = [⃗k⊤M]w⃗

Example:

[M] =

(
P
H

)
Statement: [⃗y] =

(
[y]1
[y]2

)
= [M]w =

(
wP
wH

)
[⃗k⊤M] = k1P + k2H π = w(k1P + k2H)

Hash Proof System [CraSho02]

Notation: [a] := aP .

P

[⃗y] : y⃗ = Mw⃗

VP

σ = (gk, [M], [⃗k⊤M])

k⃗← K

π
?
= k⃗⊤ [⃗y]

π = [⃗k⊤M]w⃗

Completeness:
[⃗k⊤M]w⃗ = k⃗⊤[Mw⃗] = k⃗⊤ y⃗.

Hash Proof System [CraSho02]

Notation: [a] := aP .

P

[⃗y] : y⃗ = Mw⃗

VP

σ = (gk, [M], [⃗k⊤M])

k⃗← K

π
?
= k⃗⊤ [⃗y]

π = [⃗k⊤M]w⃗

Soundness:

If y⃗ /∈ Im(M), k⃗⊤ [⃗y] information theoretically hidden!

If designated verifier key is leaked, no soundnes!

QA-NIZK for Linear Spaces [LibPetJoyYun14,KiWeel15]

P

[⃗y] : y⃗ = Mw⃗

VP

(gk, [M], [K⊤M], [A], [AK⊤])

e([A], π)
?
= e([AK⊤], [⃗y])

π = [K⊤M]w⃗

Completeness, Zero-Knowledge: Unchanged.
Soundness: Computational: unless the prover knows w⃗ s.t [⃗y] = [M]w⃗, it
cannot compute [π].

QA-NIZK Proof for Linear Spaces for R1CS1

To prove R1CS, the “Compiled”Protocol needs to prove:a(τ)P
b(τ)P
c(τ)P

 =

u1(τ)P . . . um(τ)P
v1(τ)P . . . vm(τ)P
w1(τ)P . . . wm(τ)P

 z⃗,

i.e. ”Membership” in column space of matrix 3× |m|.

The SRS needs to include, among others:

[K⊤M] = (
β

δ
,

α

δ
,

1
δ
)

u1(τ)P . . . um(τ)P
v1(τ)P . . . vm(τ)P
w1(τ)P . . . wm(τ)P

 = (
βuj(τ) + αvj(τ) + wj(τ)

δ
)m

j=1.

Security relies crucially on the fact that it is impossible to calculate K⊤ y⃗ if
does not have a witness for [⃗y] ∈ Col(M) =⇒ New key K for every
circuit!!

1Our aim here is to present all techniques in the literature in a unified way, not an attribution
of these techniques to the QA-NIZK literature.

Groth16

Combination of Hadamard Argument + QANIZK (in asymmetric bilinear
groups) super compressed, using full power of unfalsifiable assumptions;
SRS is:

α, β, δ, {τi}n−1
i=0 , {uj(τ)β + vj(τ)α + wj(τ)}l

j=0{
uj(τ)β + vj(τ)α + wj(τ)

δ

}m

j=l+1

, {xit(τ)/δ}n−2
i=0 ,

Prover cost: a few multiexponentiations of size O(|m.gates|), 7 FFT of
size |m.gates| (O(|m.gates| log |m.gates|) field operations).
Proof size 3 group elements, super efficient verification 3 pairings
(independent of circuit size!)
Trusted Setup is inherently circuit dependent.

Trusted Setups

Z. Wilcox (ZCash) on his knees destroying a computer after parameter generation.

SNARKs require a trusted party to generate the parameters.
Knowledge of randomness to generate parameters: complete failure.
Solution: distribute trust in a Setup Ceremony.
Costly and complicated process.

SNARKs: Improving Parameter Generation [GroKohMalMeiMie18]
a b

c d a b c d

Multiparty Computation Model Updatable Model

Updatable Model: for soundness it suffices that one party is honest, and
CRS can always be updated NI.

In [BowGabMie17]: after a trusted and updatable setup phase to generate
(τPi, τ2Pi, . . . , τqPi), i = 1, 2, circuit dependent setup of Groth16 is
updatable.

Universal and Updatable SNARKs: after a trusted and updatable setup
phase to generate (τPi, τ2Pi, . . . , τqPi), i = 1, 2, a circuit dependent SRS
that preprocesses the circuit is derived.

Marlin

Marlin: How to Prove Many Inner Product Relations

Problem 1. No efficient extension of the univariate sumcheck to prove m
inner product relations.
Solution 1. Prove one sufficiently random relation:

Checking if y⃗ = Mz⃗ vs Checking if r⃗⊤ y⃗ = (⃗r⊤M) · z⃗,
where r⃗

is sufficiently random, chosen by verifier!!

Problem 2 Although matrix M is public, a sublinear verifier cannot afford
to sample a random vector in rowspace of M (since number of rows =
O(|C|))
Solution 2: Prover needs to show that r⃗⊤M is correct.

From Algebraic Relations to Polynomials
Reducing Many to One Relations

Given M ∈ Fn×n, define the bivariate polynomial:

P(X, Y) = (λ0(Y), . . . , λn−1(Y)) M

 λ0(X)
...

λn−1(X)

 =
m−1

∑
i=0

n−1

∑
j=0

mijλi(Y)λj(X)

Given random x, the vector

d⃗ = (λ0(x), . . . , λn−1(x)) M

is a sufficiently random vector in the row span of M.

The partial evaluation

D(X) = P(X, x) =
n−1

∑
i=0

diλi(X) = (λ0(x), . . . , λn−1(x)) M

 λ0(X)
...

λm−1(X)


is a polynomial encoding of d⃗ in the Lagrange basis.

From Algebraic Relations to Polynomials
Sparse Encodings

The partial evaluation

D(X) = P(X, x) =
n−1

∑
i=0

diλi(X) = (λ0(x), . . . , λn−1(x)) M

 λ0(X)
...

λn−1(X)


is a polynomial encoding of d⃗ in the Lagrange basis.
The prover needs to show that D(X) is correct.
Preprocessing M naively does not work, would mean quadratic SRS.
Idea: in the preprocessing phase, polynomials
col, row : K −→ {0, . . . , n− 1} and val : K −→ Zp are defined such that:

D(X) = ∑
k∈K

val(k)λrow(k)(x)λcol(k)(X)

where K is the number of non-zero entries of M.

Summary
How to prove Many Linear Relations?

Statement: y⃗ = Mz⃗.
Õ(n) = O(n log2 n), quasi linear

Groth16, ...

Trusted setup for
each A, B, C
Not universal!
Prover:
Õ(|m.gates|)

Plonk,...
Permutation-based
arguments
M is a permutation

y⃗ = Mz⃗ iff

∏(X + yi) = ∏(X + zi).

Prover: Õ(|total gates|)

Spartan, Marlin
Reduce many to one relation
and use inner product

y⃗ = Mz⃗ =⇒ (⃗r⊤M)⃗z = r⃗⊤ z⃗,

r⃗ sufficiently random
Prover: Õ(|sparsity matrix|)

Conclusion: Choice of technique to prove linear constraints determines much of
the characteristics of proof system:

Plonk, Marlin need randomized checks, thus random oracles.
Groth16 does not need ROs but circuit dependent setup;
Plonk changes arithmetization so that checking permutations is enough;
Different prover perfomance for each technique, free additive gates in
Groth16.

Summary
How to prove Many Linear Relations?

Statement: y⃗ = Mz⃗.
Õ(n) = O(n log2 n), quasi linear

Groth16, ...

Trusted setup for
each A, B, C
Not universal!
Prover:
Õ(|m.gates|)

Plonk,...
Permutation-based
arguments
M is a permutation

y⃗ = Mz⃗ iff

∏(X + yi) = ∏(X + zi).

Prover: Õ(|total gates|)

Spartan, Marlin
Reduce many to one relation
and use inner product

y⃗ = Mz⃗ =⇒ (⃗r⊤M)⃗z = r⃗⊤ z⃗,

r⃗ sufficiently random
Prover: Õ(|sparsity matrix|)

Conclusion: Choice of technique to prove linear constraints determines much of
the characteristics of proof system:

Plonk, Marlin need randomized checks, thus random oracles.
Groth16 does not need ROs but circuit dependent setup;
Plonk changes arithmetization so that checking permutations is enough;
Different prover perfomance for each technique, free additive gates in
Groth16.

