Pairing Based zkSNARKs

Carla Rafols

September 2024

Universitat
upf.

Pompeu Fabra
Barcelona

(zk)-SNARKs

=] F = = E DA

(zk)-SNARKs

X Y I//X?r‘iv—
s \s/x = P&owsf: (be,x?ﬁwﬂ
Luf e
S= TERIFIER X TL)
\L \!/ ?4&3/7) i

F(qu\: / X?riu) = é_ &Cw’ljﬁ o Pe‘edf_) .
= E%0 wNOWLEDGE

AcbiTRARY peoor TR T

COMPUTATION

m We think of "practical” proofs as proofs of computational integrity;

m ZKPs reveal nothing about private inputs of the computation;

m (zk)SNARKSs ((zk-)Succinct Non-Interactive Arguments of Knowledge)
are short proofs, usually independent of computation size

|7e| < |F|

How are many SNARKSs built?
s FRONTEND

Computation Computation Representation
e.g. Arith. Circuit, Arith. Circuit with Lookups

=
program model with restricted operations
Algebraic Relations Polynomial Relations
R1CS, Plonkish, CCS
e.g.A,B,Cst. Univ or Multiv.
—> Z satisfies circuit iff — e.g.

AZoBZ = CZ HX)|A(X)B(X) — C(X)

How are many SNARKSs built?

= BACKEND

(Preprocessing) Polynomial IOP

SRS
"zfo,ioqg

(] spsy, [0
o

L
22095

0(.L

N

Polynomial

commitment
+

Fiat Shamir

SNARK

SRS or CRS, 7

How are many SNARKSs built?

s BACKEND
(Preprocessing) Polynomial I0P SNARK
SRS
Tpq 0T
, —
@ APl E Polynomial
PR commitment SRS or CRS, 7
$pailQ’ I
oo

< Fiat Shamir

Compressing Step
Cryptography
Comp. Security

m Key ldea:: Checking Polynomial Identities at Random Points (or in an
elliptic curve)
Can be done succinctly with Polynomial Commitments.

m ZK comes almost for free.

SNARKS for Proving Large Computations

= FRONTEND

LON G- LARGE
LARGE LARGER \CemeS DEGREG
Computation — Computation — Algebraic — Polynomial
Representation Relations Relations
= BACKEND A LOT of _
CPRYPTOGRHPH)

C
PROGE
— PIOP — SNARK(\“‘OP\%&‘(

Example of Practical Parameters:
m C circuit with 220

multiplication gates over finite field of 255 bits;

What is a “good” SNARK

Performance measured in different parameters.

! be {01} 4
(&

\

Peggy: (x,w) Victor: x
Prover complexity/ Verifier complexity.
Proof size

n
[
m Transparent Setup/Structured Reference String.
m Private vs Public Verification...

n

Weaker/ Stronger Computational assumptions.

This talk:

m O(nlogn) prover, O(1) proof size, O(1)/O(logn) verification
(preprocessing univariate PIOP, KZG Polynomial Commitment in pairing

groups)

But recently many SNARKSs,

m O(n) prover, O(logn) proof size, O(logn) verification (preprocessing
multivariate PIOP, sumcheck protocol)

Example: From Circuits to Algebraic Relations
Rank 1 Constraint Systems

Statement: C(1,xq,xp, w) = x3 for some w, X public inputs.

° Two multiplication gates g1, 82
25

° 25 = (222)(z3 +24)
e @ e z6 = (14 22)z5

z1=1 =X 23 =X z4
1 0 0 0 0 0\ /1 1 1 0 0 0 0 0
o 1 0 0 0 0 |z 2 1 0 0 0 0 0
oo 1 0 0 0 [|m| | = 10 0 0 0 o0
A= 10 0 0 1 0 0 ||m|T| o | BT 1 0 0 0 0 0
o 2 0 0o o0 o ||z 22, 0o 0o 1 1 0 o0
11 0 0 0o 0/ \x 142 000 0 0 1 0

Statement true <

AZoBZ=CZ and {z1 = 1,25 = x1,23 = X2,2 = X3}

From Circuit to Algebraic Relations, Takeaway

Statement: C(1, x1,x2, w) = x3 for some w, X public inputs.
Public Input Relations:
{z1 = 1,20 = x1,23 = X3, 26 = x3}
Hadamard Product Relation:
dob=7<C
Linear Relations:
i=AZ b=BZ = CZ

m Matrices are public, part of the circuit description.

m They are sparse, but of dimension of the extended witness size (inputs +
multiplicative gates).

From Algebraic Relations to Univariate Polynomials

Inner Product Relations and the Univariate Sumcheck

m R={ry...,7y_1} C F}, multiplicative subgroup

(X1
M =TIy 0 =TIX=7).
i Ui = 19) j
Algebraic Formulation Polynomial Formulation [
Vector ¥ = (Yo, - -+, Yn—1) Poly. y(X) = Z;.Zol yiri(X) = X(X)Ty' ‘
Public Input: Z, X agree on [positions z(X) — x(X) is divisible by #;(X) ‘
Hadamard Product 70 b = ¢ a(X)b(X) — ¢(X) is divisible by #(X) ‘
[Ben-Sasson et al. 18]
Inner product o = f - IR(X), deg R(X) <n—2.
t(X) divides f(X)g(X) —n~lo — XR(X)

From Algebraic Relations to Univariate Polynomials

Inner Product Relations and the Univariate Sumcheck

m R={ry...,7y_1} C F}, multiplicative subgroup

(X1
Ai(X) :Hﬁr}) HX) = [(X =7)).
jE vt i
Algebraic Formulation Polynomial Formulation [
Vector ¥ = (Yo, - -+, Yn—1) Poly. y(X) = Z;.Zol yiri(X) = X(X)Ty' ‘
Public Input: Z, X agree on [positions z(X) — x(X) is divisible by #;(X) ‘
Hadamard Product 70 b = ¢ a(X)b(X) — ¢(X) is divisible by #(X) ‘
[Ben-Sasson et al. 18]
Inner product o = f - IR(X), deg R(X) <n—2.
t(X) divides f(X)g(X) —n~lo — XR(X)

We can immediately build a non-interactive IOP for any of these relations.

Example Hadamard Product Relation
PIOP:

a(x),bx), e(x), ux)

-
a9 bLx) -) = W (x) - £

Example Hadamard Product Relation
PIOP:

a(x),bx), e(x), ux)
7

5

0G0 - k) = MK -)
Proof System:

"Coupled Pool

a @b, bR, b, h) T
7

r "
Cougiled Potod
e

e (ale)Py, b)) - & (cCEIPn,P) £ o ()P, HEP)
ac)b, b(\'-)B,LCt)?, hez)
7

S

8 &= Z‘P
Toupa, 6),b(e), els),)

-ﬂ:KZ
SRS
(Pf / e P1 /tZ'D‘l/

& fes A a(e)ble) - cle)= h()E)
_Ln_l’Pq) s Cvlrt?llt?-?)_) . 'C“-I'?Q

[}

=

How to prove Many Linear Relations?
SNARKSs with Constant Proof Size

m Statement: i = MZ.
m No efficient extension of the univariate sumcheck to prove many inner
product relations.

Plonk,... .
Groth16, ... Permutation-based Marlin
arguments Reduce many to one relation

M is a permutation and use inner product

T=MZ—7+ -7=(F'M Z,
QA-NIZK 7 = MZ iff j=MzZ=r -j=({7 M)
Arguments 7 sufficiently random

TIX+vy) =T[(X+z).

QA-NIZK Arguments
Groth16

=] F = = E DA

Motivation

m To prove R1CS, we need to prove the linear relations:

i A

7|l =(B|ze=
a(X) = A(X)"d AMX)TA 1 (X)
b(X)=A(X)"b | = (A(X)ﬁ;) 7= (vl(X)
oX)=A(x)Te Ax)Tc w1 (X)

In “Compiled”Protocol we need to prove:

a(T)P u ()P ... um(T)P
(b(r)P) = (vl(T)P vm(T)P>
c(t)P wi(T)P ... wm(T)P

"Membership” of vector of G2 in column space of matrix 3 x |m|.

Ny

om(X)

Hash Proof System [CraSho02]

Notation: [a] := aP.

o = (gk, [M], [k"M]))

P — > \Y%
= [k' M]@ o
7=k M@ Fe K
[7]: j = Mw L kT]3]
m Example:

M] = (Z) Statement: [ij] = (gﬁ) = Mlw = (gg)

K'M]=kP+kH m=uw(kP+kH)

Hash Proof System [CraSho02]

Notation: [a] := aP.

o = (gk, [M], [k"M])

o

= [kTM]@

7] =M

m Completeness:

~

Hash Proof System [CraSho02]

Notation: [a] := aP.

o

o = (gk, [M], [k M]))

7] : ¥ = M@

m Soundness:

= [k"M]@

~

If 7 ¢ Im(M), k' [#] information theoretically hidden!

If designated verifier key is leaked, no soundnes!

QA-NIZK for Linear Spaces [LibPetJoyYun14, KiWeel15]

(gk, [M], [K"M], [A], [AK])

P > \Y
= [K'M|®
[7]:9 = Mo e([A],) Z e([AKT], 7))
m Completeness, Zero-Knowledge: Unchanged.
m Soundness: Computational: unless the prover knows @ s.t [if] = [M]@, it

cannot compute [71].

QA-NIZK Proof for Linear Spaces for RLCS!

m To prove R1CS, the “Compiled”Protocol needs to prove:

a(t)P u ()P ... up(t)P
b(OP | =vn(DP ... vu(D)P |Z
c(t)P wi(T)P ... wu(t)P

i.e. "Membership” in column space of matrix 3 x |m]|.

m The SRS needs to include, among others:

u(O)P ... uy(t)P) ‘ ‘
[K'M] = (é, 5, 1) 0127373 vm(Tgp _ (5”](1') + av;(T) +w](r))
070790 w ()P ... wy(T)P 0

m Security relies crucially on the fact that it is impossible to calculate KTy' if
does not have a witness for [ij] € Col(M) = New key K for every
circuit!!

1QOur aim here is to present all techniques in the literature in a unified way, not an attribution
of these techniques to the QA-NIZK literature.

Groth16

m Combination of Hadamard Argument + QANIZK (in asymmetric bilinear
groups) super compressed, using full power of unfalsifiable assumptions;

m SRS is:
0, 8,0, {7} (0B + oD+ (1)}

{”f<f>ﬁ+vj<””‘+wf) }m Axlt(n) /6}1E,
0 j=1+1

m Prover cost: a few multiexponentiations of size O(|m.gates|), 7 FFT of
size |m.gates| (O(|m.gates|log |m.gates|) field operations).

m Proof size 3 group elements, super efficient verification 3 pairings
(independent of circuit sizel)

m Trusted Setup is inherently circuit dependent.

Trusted Setups

=] F = = E DA

Z. Wilcox (ZCash) on his knees destroying a computer after parameter generation

SNARKSs require a trusted party to generate the parameters.
Knowledge of randomness to generate parameters: complete failure.
Solution: distribute trust in a Setup Ceremony.

Costly and complicated process.

SNARKSs: Improving Parameter Generation [GroKohMalMeiMiel8]

b

b 00N

Q ‘j"\)

L><L @ ® - o

&—1 « 7 @ i
Multiparty Computation Model Updatable Model

m Updatable Model: for soundness it suffices that one party is honest, and
CRS can always be updated NI.

m In [BowGabMiel7]: after a trusted and updatable setup phase to generate
(tP;, t*P;,...,T1P;), i = 1,2, circuit dependent setup of Groth16 is
updatable.

m Universal and Updatable SNARKSs: after a trusted and updatable setup
phase to generate (tP;, T2P;,...,TIP;), i = 1,2, a circuit dependent SRS
that preprocesses the circuit is derived.

Marlin

Q>

Marlin: How to Prove Many Inner Product Relations

m Problem 1. No efficient extension of the univariate sumcheck to prove m
inner product relations.

m Solution 1. Prove one sufficiently random relation:

Checking if f = MZ vs Checking if 7T §j = (FTM) - Z,
where 7
is sufficiently random, chosen by verifier!!

m Problem 2 Although matrix M is public, a sublinear verifier cannot afford
to sample a random vector in rowspace of M (since number of rows =

o(ch)

m Solution 2: Prover needs to show that 7' M is correct.

From Algebraic Relations to Polynomials
Reducing Many to One Relations

Given M € F"*" | define the bivariate polynomial:

/\O(X) m—1n—1
P(X,Y) = (Ao(Y),..., Ay-1(Y)) M : =) Zmi]‘/\i(y)/\j(x)
Ma(x)) O

m Given random x, the vector
d=(Ao(x),-- -, Au_1(x)) M
is a sufficiently random vector in the row span of M.

m The partial evaluation

- Ao(X)
D(X) = P(X,x) =) diAi(X) = (Ao(x),..., Au1(x)) M :
=0)‘m—l(X)

is a polynomial encoding of d in the Lagrange basis.

From Algebraic Relations to Polynomials
Sparse Encodings

m The partial evaluation

- Ao(X)
D(X) = P(X,x) = }_ diAi(X) = (Ag(x),..., A1 (x)) M :
=0 An—l(X)

is a polynomial encoding of d in the Lagrange basis.
m The prover needs to show that D(X) is correct.
m Preprocessing M naively does not work, would mean quadratic SRS.

m ldea: in the preprocessing phase, polynomials
col,row : K — {0,...,n — 1} and val : K — Z,, are defined such that:

D(X) = kz Val(k)Arow(k) (x)/\col(k) (X)
€K

where K is the number of non-zero entries of M.

Summary
How to prove Many Linear Relations?
m Statement: ij = MZ.
m O(n) = O(nlog, n), quasi linear

Grothls, ... Plonk,...
Permutation-based Spartan, Marlin
arguments Reduce many to one relation
M is a permutation and use inner product

Trusted setup for o o T=MZ— (F M)Z=7'2
cach A,B,C ¥ = MZ iff y () ,
Not universall! H(X +yi) = H(X +z;). 7 sufficie[\tly random

Prover: Prover: O(|sparsity matrix|)

O(|m.gates|) Prover: O(|total gates|)

Summary
How to prove Many Linear Relations?
m Statement: ij = MZ.
m O(n) = O(nlog, n), quasi linear

Groth16, ... Plonk,...

Permutation-based Spartan, Marlin

arguments Reduce many to one relation

M is a permutation and use inner product
Trusted setup for L F=MZ=— (7TM)Z2=7'2
each A,B,C y =Mz iff Y () '
Not universall! H(X +yi) = H(X +z;). 7 sufflcie[\tly rand‘om ‘
Prover: Prover: O(|sparsity matrix|)
O(|m.gates|) Prover: O(|total gates|)

Conclusion: Choice of technique to prove linear constraints determines much of
the characteristics of proof system:
m Plonk, Marlin need randomized checks, thus random oracles.
m Groth16 does not need ROs but circuit dependent setup;
m Plonk changes arithmetization so that checking permutations is enough;
m Different prover perfomance for each technique, free additive gates in
Groth16.

