
Lightning Talks (Thursday)

Speaker Institution Title

Caroline Sandsbråten NTNU Zero-Knowledge Proofs in Applications

Audhild Høgåsen Swiss Post ZK-Proofs in the current and future Swiss Post E-Voting System

Hans Heum NTNU Quantum secure proof of shuffle

Emil August Hovd
Olaisen NTNU Distributed Decryption Derived Verifiable Decryption

Artem Grigor UCL State of ZKP on mobile devices

Mahdi Sedaghat COSIC, KU
Leuven

zklogin: Privacy-preserving blockchain authentication
with existing credentials

Jayamine Alupotha University of
Bern

Account-based Untraceable Payments: Defeating Graph

Analysis with Small Decoy Sets

Thomas den
Hollander

Universität der
Bundeswehr
München

A Crack in the Firmament

Restoring Soundness of the Orion Proof System

ZERO-KNOWLEDGE PROOFS IN
APPLICATIONS

Foundations and Applications of Zero-Knowledge Proofs
Workshop

Caroline Sandsbråten

05.09.2024

Caroline Sandsbråten
▶ PhD student in Cryptology at NTNU

▶ Researching lattice-based cryptography
in distributed systems

▶ Also interested in PQ anonymous SSO
and anonymous credentials

carosa.no

ntnu.edu/employees/caroline.sandsbraten

2

https://carosa.no
https://www.ntnu.edu/employees/caroline.sandsbraten

Contents

Caveats

ZKPs in E-Voting

ZKPs in Distributed Key Generation

ZKPs in Threshold Signatures

Summary

3

Contents

Caveats

ZKPs in E-Voting

ZKPs in Distributed Key Generation

ZKPs in Threshold Signatures

Summary

4

▶ My own work focus mostly on applications of lattice based protocols.

▶ Most of these applications of zero-knowledge are therefore from the
perspective of general lattice-based applications.

▶ I have tried to make it applicable to everyone not necessarily interested in
lattices as well, but some parts will include lattice-specific proof
requirements.

5

Contents

Caveats

ZKPs in E-Voting

ZKPs in Distributed Key Generation

ZKPs in Threshold Signatures

Summary

6

ZKPs in E-Voting

S1 S2 . . . Sξ1

{c(0)i } {c(1)i } {c(2)i }

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)i }

{c(ξ1)i }

{c(ξ1)i }

({dsi,1})

({dsi,j})

({dsi,ξ2})

7

Zooming in on shuffling

S1 S2 . . . Sξ1

{c(0)i } {c(1)i } {c(2)i }

▶ Input-output ciphertexts correspondence must be obscured.

▶ The set of output ciphertexts must decrypt to the same set of plaintexts.

▶ Ciphertext noise must be bounded.

▶ Anyone should be able to verify this.

8

Zooming in on shuffling

S1 S2 . . . Sξ1

{c(0)i } {c(1)i } {c(2)i }

▶ Input-output ciphertexts correspondence must be obscured.

▶ The set of output ciphertexts must decrypt to the same set of plaintexts.

▶ Ciphertext noise must be bounded.

▶ Anyone should be able to verify this.

8

Zooming in on shuffling

S1 S2 . . . Sξ1

{c(0)i } {c(1)i } {c(2)i }

▶ Input-output ciphertexts correspondence must be obscured.

▶ The set of output ciphertexts must decrypt to the same set of plaintexts.

▶ Ciphertext noise must be bounded.

▶ Anyone should be able to verify this.

8

Zooming in on shuffling

S1 S2 . . . Sξ1

{c(0)i } {c(1)i } {c(2)i }

▶ Input-output ciphertexts correspondence must be obscured.

▶ The set of output ciphertexts must decrypt to the same set of plaintexts.

▶ Ciphertext noise must be bounded.

▶ Anyone should be able to verify this.

8

Zooming in on shuffling

S1 S2 . . . Sξ1

{c(0)i } {c(1)i } {c(2)i }

▶ Input-output ciphertexts correspondence must be obscured.

▶ The set of output ciphertexts must decrypt to the same set of plaintexts.

▶ Ciphertext noise must be bounded.

▶ Anyone should be able to verify this.

8

Zooming in on shuffling

S1 S2 . . . Sξ1

{c(0)i } {c(1)i } {c(2)i }

πS1 πS2
πSξ1

▶ Input-output ciphertexts correspondence must be obscured.

▶ The set of output ciphertexts must decrypt to the same set of plaintexts.

▶ Ciphertext noise must be bounded.

▶ Anyone should be able to verify this.

9

Zooming in on decryption

Sξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)i }

{c(ξ1)i }

{c(ξ1)i }

({dsi,1})

({dsi,j})

({dsi,ξ2})

▶ Encryption of the plaintexts must be correct.

▶ Avoiding leaking→ requires noise drowning.

▶ Need a subsequent proof that noise drowning has been applied.

▶ Need to prove the well-formedness of dsi,j .

10

Zooming in on decryption

Sξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)i }

{c(ξ1)i }

{c(ξ1)i }

({dsi,1})

({dsi,j})

({dsi,ξ2})

▶ Encryption of the plaintexts must be correct.

▶ Avoiding leaking→ requires noise drowning.

▶ Need a subsequent proof that noise drowning has been applied.

▶ Need to prove the well-formedness of dsi,j .

10

Zooming in on decryption

Sξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)i }

{c(ξ1)i }

{c(ξ1)i }

({dsi,1})

({dsi,j})

({dsi,ξ2})

▶ Encryption of the plaintexts must be correct.

▶ Avoiding leaking→ requires noise drowning.

▶ Need a subsequent proof that noise drowning has been applied.

▶ Need to prove the well-formedness of dsi,j .

10

Zooming in on decryption

Sξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)i }

{c(ξ1)i }

{c(ξ1)i }

({dsi,1})

({dsi,j})

({dsi,ξ2})

▶ Encryption of the plaintexts must be correct.

▶ Avoiding leaking→ requires noise drowning.

▶ Need a subsequent proof that noise drowning has been applied.

▶ Need to prove the well-formedness of dsi,j .

10

Zooming in on decryption

Sξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)i }

{c(ξ1)i }

{c(ξ1)i }

({dsi,1})

({dsi,j})

({dsi,ξ2})

▶ Encryption of the plaintexts must be correct.

▶ Avoiding leaking→ requires noise drowning.

▶ Need a subsequent proof that noise drowning has been applied.

▶ Need to prove the well-formedness of dsi,j .

10

Zooming in on decryption

Sξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)i }

{c(ξ1)i }

{c(ξ1)i }

({dsi,1}, πD1)

({dsi,j}, πDj)

({dsi,ξ2}, πDξ2
)

▶ Encryption of the plaintexts must be correct.

▶ Avoiding leaking→ requires noise drowning.

▶ Need a subsequent proof that noise drowning has been applied.

▶ Need to prove the well-formedness of dsi,j .

11

Contents

Caveats

ZKPs in E-Voting

ZKPs in Distributed Key Generation

ZKPs in Threshold Signatures

Summary

12

ZKPs in Distributed Key Generation
P1

...

Pi

Enc

pk1

pki

P1

...

Pi

c

c

▶ Pi needs to prove that the public key is well-formed and satisfy some
norm bound.

▶ Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

▶ The encryptor needs to be able to verify this.

▶ The encryptor then needs to prove that the ciphertext is well-formed.

▶ Again, we would ideally like anyone to be able to verify this.

13

ZKPs in Distributed Key Generation
P1

...

Pi

Enc

pk1

pki

P1

...

Pi

c

c

▶ Pi needs to prove that the public key is well-formed and satisfy some
norm bound.

▶ Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

▶ The encryptor needs to be able to verify this.

▶ The encryptor then needs to prove that the ciphertext is well-formed.

▶ Again, we would ideally like anyone to be able to verify this.

13

ZKPs in Distributed Key Generation
P1

...

Pi

Enc

pk1

pki

P1

...

Pi

c

c

▶ Pi needs to prove that the public key is well-formed and satisfy some
norm bound.

▶ Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

▶ The encryptor needs to be able to verify this.

▶ The encryptor then needs to prove that the ciphertext is well-formed.

▶ Again, we would ideally like anyone to be able to verify this.

13

ZKPs in Distributed Key Generation
P1

...

Pi

Enc

pk1

pki

P1

...

Pi

c

c

▶ Pi needs to prove that the public key is well-formed and satisfy some
norm bound.

▶ Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

▶ The encryptor needs to be able to verify this.

▶ The encryptor then needs to prove that the ciphertext is well-formed.

▶ Again, we would ideally like anyone to be able to verify this.

13

ZKPs in Distributed Key Generation
P1

...

Pi

Enc

pk1

pki

P1

...

Pi

c

c

▶ Pi needs to prove that the public key is well-formed and satisfy some
norm bound.

▶ Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

▶ The encryptor needs to be able to verify this.

▶ The encryptor then needs to prove that the ciphertext is well-formed.

▶ Again, we would ideally like anyone to be able to verify this.

13

ZKPs in Distributed Key Generation
P1

...

Pi

Enc

pk1

pki

P1

...

Pi

c

c

▶ Pi needs to prove that the public key is well-formed and satisfy some
norm bound.

▶ Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

▶ The encryptor needs to be able to verify this.

▶ The encryptor then needs to prove that the ciphertext is well-formed.

▶ Again, we would ideally like anyone to be able to verify this.

13

ZKPs in Distributed Key Generation
P1

...

Pi

Enc

(pk1 , πP1)

(pki, πPi
)

P1

...

Pi

(c, πenc)

(c, πenc)

▶ Pi needs to prove that the public key is well-formed and satisfy some
norm bound.

▶ Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

▶ The encryptor needs to be able to verify this.
▶ The encryptor then needs to prove that the ciphertext is well-formed.
▶ Again, we would ideally like anyone to be able to verify this.

14

Contents

Caveats

ZKPs in E-Voting

ZKPs in Distributed Key Generation

ZKPs in Threshold Signatures

Summary

15

ZKPs in Threshold Signatures

P1

...

Pi

Comb

ds1

dsi

▶ Prove that the correct randomness is used.

▶ Prove that the partial signatures are well-formed.

▶ The underlying keypairs should also be proven to be generated correctly.

16

ZKPs in Threshold Signatures

P1

...

Pi

Comb

ds1

dsi

▶ Prove that the correct randomness is used.

▶ Prove that the partial signatures are well-formed.

▶ The underlying keypairs should also be proven to be generated correctly.

16

ZKPs in Threshold Signatures

P1

...

Pi

Comb

ds1

dsi

▶ Prove that the correct randomness is used.

▶ Prove that the partial signatures are well-formed.

▶ The underlying keypairs should also be proven to be generated correctly.

16

ZKPs in Threshold Signatures

P1

...

Pi

Comb

ds1

dsi

▶ Prove that the correct randomness is used.

▶ Prove that the partial signatures are well-formed.

▶ The underlying keypairs should also be proven to be generated correctly.

16

ZKPs in Threshold Signatures

P1

...

Pi

Comb

(ds1, πP1)

(dsi, πPi
)

▶ Prove that the correct randomness is used.

▶ Prove that the partial signatures are well-formed.

▶ The underlying keypairs should also be proven to be generated correctly.

17

Contents

Caveats

ZKPs in E-Voting

ZKPs in Distributed Key Generation

ZKPs in Threshold Signatures

Summary

18

Summary

▶ Zero-knowledge proofs are a powerful tool in the cryptographic toolbox
for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.

▶ They can be used to prove the correctness of key-generation generation
(and more).

▶ They can be used to prove well-formedness.

▶ They can be used to prove certain properties needed to ensure security in
distributed systems.

▶ They can be used to prove some party has performed some operation in
the excpected way defined by a protocol.

19

Summary
▶ Zero-knowledge proofs are a powerful tool in the cryptographic toolbox

for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.

▶ They can be used to prove the correctness of key-generation generation
(and more).

▶ They can be used to prove well-formedness.

▶ They can be used to prove certain properties needed to ensure security in
distributed systems.

▶ They can be used to prove some party has performed some operation in
the excpected way defined by a protocol.

19

Summary
▶ Zero-knowledge proofs are a powerful tool in the cryptographic toolbox

for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.

▶ They can be used to prove the correctness of key-generation generation
(and more).

▶ They can be used to prove well-formedness.

▶ They can be used to prove certain properties needed to ensure security in
distributed systems.

▶ They can be used to prove some party has performed some operation in
the excpected way defined by a protocol.

19

Summary
▶ Zero-knowledge proofs are a powerful tool in the cryptographic toolbox

for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.

▶ They can be used to prove the correctness of key-generation generation
(and more).

▶ They can be used to prove well-formedness.

▶ They can be used to prove certain properties needed to ensure security in
distributed systems.

▶ They can be used to prove some party has performed some operation in
the excpected way defined by a protocol.

19

Summary
▶ Zero-knowledge proofs are a powerful tool in the cryptographic toolbox

for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.

▶ They can be used to prove the correctness of key-generation generation
(and more).

▶ They can be used to prove well-formedness.

▶ They can be used to prove certain properties needed to ensure security in
distributed systems.

▶ They can be used to prove some party has performed some operation in
the excpected way defined by a protocol.

19

Summary
▶ Zero-knowledge proofs are a powerful tool in the cryptographic toolbox

for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.

▶ They can be used to prove the correctness of key-generation generation
(and more).

▶ They can be used to prove well-formedness.

▶ They can be used to prove certain properties needed to ensure security in
distributed systems.

▶ They can be used to prove some party has performed some operation in
the excpected way defined by a protocol.

19

Questions?

20

Swiss Post – Team E-Voting – Audhild Høgåsen 1

ZK-Proofs in the Current and Future

Swiss Post Voting System

05.09.2024

Audhild Høgåsen
audhild.hoegaasen@post.ch

Swiss Post – Team E-Voting – Audhild Høgåsen 2

2015-2022 Master’s Degree Mathematics
 Norwegian University of Science and Technology (NTNU)

University of Innsbruck

University of Bern

2022 Master’s thesis: Return Codes from Lattice Assumptions

Supervisors: Kristian Gjøsteen and Tjerand Silde

* Short paper: Return Codes from Lattice Assumptions, E-Vote-ID Conference 2022. Joint work with Tjerand Silde.

2022 - current Team E-Voting at Swiss Post

Bern, Switzerland

* Paper: Improving the Swiss Post Voting System: Practical Experiences from the Independent Examination and

First Productive Election Event, E-Vote-ID Conference 2023.

* Co-supervision of two NTNU-students (2023-2024) for the Master’s thesis Next Generation Electronic Voting

in Switzerland. Main supervisor: Tjerand Silde.

05.09.2024

Swiss Post Voting System

Swiss Post – Team E-Voting – Audhild Høgåsen 3

The Swiss Post Voting System is

an electronic voting system in

use in national and cantonal

elections in Switzerland.

Ca 4 elections per year (direct

democracy). E-voting as

additional (optional) voting

channel. (Most people in

Switzerland vote by postal

voting.)

All documentation

published on GitLab.

In the e-voting setting, NIZK-

Proofs play an important role to

ensure vote secrecy and

verifiability.

Where in the Swiss Post Voting

System are NIZK-Proofs used?

05.09.2024

https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/master/ABOUT.md

Voting phase: Creation of the ballot
includes ZK-proofs of correct creation

Swiss Post – Team E-Voting – Audhild Høgåsen 4

Voter Voting

Client

Create ballot

* Ciphertext = Encrypt(YES)

* ZK-Proofs

Voting

Server
YES Ballot

05.09.2024

Swiss Post – Team E-Voting – Audhild Høgåsen 5

Voting phase: Creation of the ballot
pseudocode for generating ZK-Proofs of the ballot

05.09.2024

Tally phase: Mix net
includes ZK-Proofs of correct shuffle and correct partial decryption

Swiss Post – Team E-Voting – Audhild Høgåsen 6

All Ciphertexts of

the Election

* Election Result

* ZK-Proofs

* Mixed Ciphertexts

* ZK-Proofs

05.09.2024

Shuffle,

partially decrypt and

generate ZK-proofs

Shuffle,

partially decrypt and

generate ZK-proofs

Swiss Post – Team E-Voting – Audhild Høgåsen 7

Tally phase: Mix net
sequence diagram and pseudocode for the mixing process

05.09.2024

Future enhanced protocol
further ZK-Proofs needed in the setup phase and voting phase

Swiss Post – Team E-Voting – Audhild Høgåsen 8

• Swiss Post is working on an asymmetric distributed protocol for weakening the trust assumptions

on the Setup Component;

• Currently, a trustworthy Setup Component is assumed for vote secrecy and individual verifiability;

• In the enhanced protocol, one offline and multiple online components generate the codes of the

system in a distributed way;

• The enhanced protocol might include
(additional to the primitives already present in current protocol)

• Mix net in the setup phase

• ZK-proof of same permutation

used in two different shuffles

• Plaintext Equality Tests (PET)

05.09.2024

Do you want to know more about the Swiss Post Voting System?

Swiss Post – Team E-Voting – Audhild Høgåsen 9

• Find more information about the system and how to contribute on gitlab.com/swisspost-evoting;

• See also Improving the Swiss Post Voting System: Practical Experiences from the Independent

Examination and First Productive Election Event, E-Vote-ID Conference 2023

Community programme

current status (02.08.2024)

Since 2021…

• Total reports: 360

• Findings of “critical” severity: 0

• Findings of “high” severity: 5

• Total rewards paid out: € 198 450

05.09.2024

https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/master/ABOUT.md
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/master/Reports/e-vote-2023-Improving_the_SwissPostVotingSystem.pdf
https://evoting-community.post.ch/en/contributions

Hans Heum
NTNU

DISTRIBUTED DECRYPTION DERIVED
VERIFIABLE DECRYPTION

Emil August Hovd Olaisen

August 22, 2024

Verifiable Decryption

▶ A system that enables a prover with the secret key to demonstrate that a
ciphertext decrypts to a given message using that key

2

Verifiable Decryption

▶ A system that enables a prover with the secret key to demonstrate that a
ciphertext decrypts to a given message using that key

▶ Showing that a message encrypts to a ciphertext is something anyone can
do using the public key

3

Verifiable Decryption

▶ A system that enables a prover with the secret key to demonstrate that a
ciphertext decrypts to a given message using that key

▶ Showing that a message encrypts to a ciphertext is something anyone can
do using the public key

▶ We want this to be a zero-knowledge proof, it should not leak info about
the secret key, nor be open to forgery

4

2-Party Distributed Decryption

Given a PKE with algorithms KGen,Enc,Dec we define the algorithms of 2-party
distributed decryption:
The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk0, sk1 and

additional auxiliary data aux

5

2-Party Distributed Decryption

Given a PKE with algorithms KGen,Enc,Dec we define the algorithms of 2-party
distributed decryption:
The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk0, sk1 and

additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, ski)) outputs either yes or no

6

2-Party Distributed Decryption

Given a PKE with algorithms KGen,Enc,Dec we define the algorithms of 2-party
distributed decryption:
The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk0, sk1 and

additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, ski)) outputs either yes or no
The player algorithm (Play(ski, c)) outputs a decryption share dsi

7

2-Party Distributed Decryption

Given a PKE with algorithms KGen,Enc,Dec we define the algorithms of 2-party
distributed decryption:
The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk0, sk1 and

additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, ski)) outputs either yes or no
The player algorithm (Play(ski, c)) outputs a decryption share dsi

The reconstruction algorithm (Rec(c, ds0, ds1)) outputs either an error ⊥ or a
messagem

8

2-Party Distributed Decryption
Given a PKE with algorithms KGen,Enc,Dec we define the algorithms of 2-party
distributed decryption:
The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk0, sk1 and

additional auxiliary data aux
The verify algorithm (Verify(pk, aux, i, ski)) outputs either yes or no
The player algorithm (Play(ski, c)) outputs a decryption share dsi
The reconstruction algorithm (Rec(c, ds0, ds1)) outputs either an error ⊥ or a

messagem

Correctness
A distributed decryption protocol is correct if on input messagem and pk, we
have that all (sk0, sk1, aux) generated by the dealer algorithm Deal satisfies
Verify(pk, aux, i, ski) = 1 for i = 0, 1, and that

c = Enc(pk,m);Rec(c,Play(sk0, c),Play(sk1, c)) = m

9

Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

10

Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

1. The prover runs Deal α times to create the key shares sk0,k, sk1,k, auxk for
1 ≤ k ≤ α, they commit to these shares. They also generate
ds0,j = Play(sk0,k, c), ds1,k = Play(sk1,k, c) and send the commitments,
decryption share and auxiliary data

11

Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

1. The prover runs Deal α times to create the key shares sk0,k, sk1,k, auxk for
1 ≤ k ≤ α, they commit to these shares. They also generate
ds0,j = Play(sk0,k, c), ds1,k = Play(sk1,k, c) and send the commitments,
decryption share and auxiliary data

2. The verifier sends back a vector ϕ ∈ {0, 1}α

12

Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

1. The prover runs Deal α times to create the key shares sk0,k, sk1,k, auxk for
1 ≤ k ≤ α, they commit to these shares. They also generate
ds0,j = Play(sk0,k, c), ds1,k = Play(sk1,k, c) and send the commitments,
decryption share and auxiliary data

2. The verifier sends back a vector ϕ ∈ {0, 1}α

3. The prover sends the secret key shares skϕ[k],k

13

Verifiable Decryption from Distributed Decryption
How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

1. The prover runs Deal α times to create the key shares sk0,k, sk1,k, auxk for
1 ≤ k ≤ α, they commit to these shares. They also generate
ds0,j = Play(sk0,k, c), ds1,k = Play(sk1,k, c) and send the commitments,
decryption share and auxiliary data

2. The verifier sends back a vector ϕ ∈ {0, 1}α

3. The prover sends the secret key shares skϕ[k],k
4. For all 1 ≤ k ≤ α the verifier checks if

Rec(c, ds0,k, ds1,k) = m,Play(skϕ[k],k, c) = dsϕ[k],k and if
Verify(pk, auxk, ϕ[k], skϕ[k],k) holds true

14

Contributions

Verifiable decryption scheme Encryption scheme Ciphertext size Plaintext size Amortized proof size
Gjøsteen et al. [1] BGV 28.2 KB 2048 bits (4883/τ + 1.8)MB
Our protocol Π2 BGV 28.2 KB 2048 bits (2691/τ + 32.8) KB

Lyubashevsky et al. [2] Kyber-512 0.8 KB 256 bits 43.6 KB
Our protocol Π2 M− LWE 19.9 KB 256 bits (3181/τ + 4.1) KB

Table: Amortized comparison between verifiable decryption schemes for λ = 128.

15

References

K. Gjøsteen, T. Haines, J. Müller, P. B. Rønne, and T. Silde.
Verifiable decryption in the head.
pages 355–374, 2022.

V. Lyubashevsky, N. K. Nguyen, and G. Seiler.
Shorter lattice-based zero-knowledge proofs via one-time commitments.
pages 215–241, 2021.

16

State of Zero-Knowledge Proofs
on Mobile

Artem Grigor

University College London (UCL)

05/09/2024

Why ZKP on Mobile?
Performance overall has increased

1 Recent Advances in ZKP Implementation
• Software optimizations, particularly in Multi-Scalar

Multiplication (MSM).
• Better developer friendly tooling.

2 Mobile devices now rival or exceed modern PCs in
power, enabling practical ZKP implementations.

Why ZKP on Mobile?
Mobile Phones are now the most used platform

Figure: https://blog.gwi.com/trends/device-usage-2019/

ZKP in Action: Identity Verification

• KYC: Anon Aadhaar, Myna Wallet.
• Voting:
• Proof of Humanity on Blockchain: zkPassport,

Proof-of-Passport.

ZKP in Action: Data Provenance

• Proof of Funds: Verida.
• Proof of Payment: zkP2P.
• General Proof of Data/Attribute Provenance:

zkTLS, zkEmail.

Why do Native ZKP on Mobile?

• Dominance of native ZKP implementation due to
better performance and security.

• Full utilization of mobile hardware, optimized
resource usage, OS-level security.

Developer Ecosystem
• Developer Tools: Mopro as a framework to simplify

ZKP development across platforms.

• Technology Stack: Mostly Circom (R1CS +
Groth16), considered alternatives include:

1 Noir DSL (Hyperplonk)
2 Halo2 Rust library

Live App Demonstration

Instructions: Scan the QR code to view the live demo or
interact with the application. Focus on how the app
implements ZKP efficiently on mobile.

Figure: Mopro Benchmark App link

Performance Benchmark
The benchmark results of running several circuits on
iPhone 14 Pro

Figure: Comparison of Native and Browser Implementations

Challenges and Future Directions

Challenges:
• High computational cost of SNARKs.
• Cross-platform restrictions (e.g., iOS WebAssembly

limitations).
• GPU optimization issues (e.g., MSM, I/O

bottlenecks).
Future Directions:
• Exploring prover-efficient proof systems (e.g.,

STARKs).
• Potential of MPC and surrogate proofs.
• Further optimization and hardware acceleration.

Questions and Discussion

Thank you for your time!

Any Questions?

zkLogin: Onboarding the
next billion users to web3

Jointly with Foteini Baldimitsi | Kostas Chalkias | Yan Ji | Jonas Lindstrøm | Deepak Maram | Ben Riva |

Arnab Roy | Joy Wang

Mahdi Sedaghat

Foundations and Applications of Zero-Knowledge Proofs, Edinburgh, UK

Soundness Labs

There are around

100 million
active crypto wallets

and there are several

BILLIONS
of web2 accounts

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Mnemonics and keys are not going
to get us mass adoption.

Complexity is the killer of adoption.

The ultimate killer dApp for blockchain, is accessibility.

Can we make it as easy as signing in

with Google, Facebook and co?

● People don’t want to use separate

passwords for each and every app,

each and every web2 service

● Extremely likely they already have a

Google, Facebook, Amazon account

● Solution: use OAuth to leverage these

already existing accounts

ht tps:/ /cdn.vox-

cdn.com/ thum bor/ncbDuMeGzbUI6Ve0w6npZnclPSQ=/0x0:1125x2184/2000x1333/f ilters: focal(574x1530:575x1531)/cdn.vo

x-cdn.com/uploads/chorus_asset/ fil e/22756604/ IM G_2175.jpeg

zkLogin:
OAuth + Zero Knowledge Proof

Non-custodial

User-friendly

Privacy-preserving

OpenID Connect (an extension of OAuth 2.0)

JWT: JSON Web Token
Base64-encoded, RSA-signed

JWT as an alternative to a
private key?

A Google-issued JWT (decoded)

you can ask for email
and other personal info

zkLogin tricks
sample openID JWT token

signed by Google / FB

aud = walletID

sub = userID

we could ask
for email too

nonce = eph.

pubKey
+ expiration

add salt

inject eph key

+

+ ZK
proof

=
ADDRESS

~hash(providerID + zkhash(walletID + userID + zkhash(salt)))

&

verify ZKproof verify eph key sig+

Circuit details

- Implemented in circom: ~1M R1CS constraints

- Key operations

- SHA-2 (66%)

- RSA signature verification (14%) using tricks from [KPS18]

- JSON parsing, Poseidon hashing, Base64, extra rules (20%)

- Prover based on rapidsnark

- C++ and Assembly based

zkLogin latency

Latency for most zkLogin transactions
is very similar to traditional ones!

These numbers correspond
only to the first transaction

of a session

Q & A
ZK for authentication
How to SNARK sign-in with Google, Apple & FB

Paper

Contact: mahdi@soundness.xyz

Sui docs Demo

Soundness Labs

https://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Backup slides

19

Naive solution: OAuth + Custodian

Can we avoid the trusted
custodian?

zkLogin goodies

Embedded wallet

Mobile apps or websites

can natively integrate

zkLogin without the need

for a wallet popup!

2FA

Can do a 2-out-of-3

between Google, Facebook

and Apple. Salt can also

serve as a second factor.

Hard to lose!

Thanks to robust recovery

paths of Google,

Facebook.

ADDRESS
hash(providerID + zkhash(walletID + userID + zkhash(salt))) + ZK

proof

Native auth, cheap

Not via smart contracts,

same gas cost as regular

sig verification.

ID-based wallets

Create email or phone

number based accounts.

Can also reveal identity of

an existing account (e.g.,

email) fully or partially

(e.g., reveal a suffix like

@xyz.edu)

zkLogin

Google
Facebook
Twitch

native authenticator

non-custodial
*discoverable, claimable
invisible wallets
semi-portable, 2FA

single-click accounts w/

Apple

zklogin_video.mov

Slack

Microsoft

http://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Challenge 1: How to authorize a tx with a JWT?

Inject a fresh pub key into JWT!

replace nonce with
user provided data:

ephemeral pub key +
expiration

We have a DIGITAL CERT over our fresh key + expiration

Challenge 2: How to identify the user without
linking identities?

aud = walletID

sub = userID

we could ask
for email too

ADDRESS
???

Add a persistent randomizer: salt
aud = walletID

sub = userID

we could ask
for email too

ADDRESS
hash(providerID + walletID + userID + salt)

Salt: A persistent per-user
secret for unlinkability

Who maintains the salt?

ADDRESS
hash(providerID + walletID + userID + salt)

- Client-side on-device management
- Edge cases, e.g., cross-device sync, device loss need handling

- Server-side management by a “salt service”
- Each wallet can maintain their own service / delegate it

- Privacy models: Store salt either in TEE / MPC / plaintext

- Auth policies to the service: Either JWT or 2FA

Salt: A persistent per-user
secret for unlinkability

Challenge 3: How to hide the JWT?
SNARKs to the rescue!

aud = walletID

sub = userID

we could ask
for email too

nonce = eph.

pubKey
+ expiration

Goal: Prove you have a valid JWT + you know the salt + you injected the

ephemeral key into JWT

- Verify JWT’s signature using Google’s public key

- Verify the ephemeral public key is injected into the JWT’s nonce

- Verify that the address is derived correctly from the JWT’s userID, walletID,

providerID + user’s salt Yellow => private inputs

Blue => public inputs

Challenge 4: Prove + RTT in <3s

- We chose Groth16 due to its small proofs + rich ecosystem + fast prover

- But.. proofs are slow to generate on end-user devices

- Make ZKP efficient: Hand-optimized circuit that selectively parses relevant

parts of the JWT + string slicing tricks + …

- Delegate proving to an untrusted ZKP service

- Open problem: How to delegate with privacy?

Nopenena Untraceable Payments
Defeating Graph Analysis with Small Decoy Sets

Jayamine Alupotha, Mathieu Gestin, and Christian Cachin

Classic Decentralized Payments

payment

acc1:10 coins

acc2:5 coins

acc1:5 coins

acc2:10 coins

5 coins

Alice (sender)

Bob (receiver)

Worse
privacy than

bank
payments!

Decoy-based Confidential Payments

payment

acc1:10

acc2: ~

acc3: 5

acc2: ~

acc3: 10

An example of account-based transactions

some
coins

acc1:5

Confidentiality

Untraceability

Sender-Anonymity

Bob only learns that
Alice owns either
acc1 or acc2.

Full decoy-sets vs. User-defined decoy-sets

Full decoy-set payments User-defined decoy-set payments
Examples: Zerocoin, Zerocash,

ZCash, Lelantus, and BlockMaze

Examples: Monero, RingCTv2, RingCTv3,

Anonymous Zether, and QuisQuis

Maximal untraceability

Higher transaction expiration,

trusted setups, and high

computational cost

Better performance without
trusted setups and no
transaction expiration (!)

Untraceability within small sets
(may be degrading)

Non-degrading Untraceability

● Monero, Ring CT v2, and Ring CT v3 (UTXO)

[1] Bünz, Benedikt, et al. "Zether: Towards privacy in a smart contract world." International Conference on Financial Cryptography and Data
Security. Cham: Springer International Publishing, 2020.

[2] Diamond, Benjamin E. "Many-out-of-many proofs and applications to anonymous zether." 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021.

● Limited to an epoch: Anonymous Zether [1][2] and PriDe CT (Accounts)

● QuisQuis

QuisQuis

● Non-degrading untraceability with small-decoy sets.

● Large cryptographic data for validity

● No “zero-knowledge contracts’’

[3] Fauzi, Prastudy, et al. "Quisquis: A new design for anonymous cryptocurrencies." Advances in Cryptology–ASIACRYPT
2019: 25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8–12, 2019, Proceedings, Part I 25. Springer International Publishing, 2019.

Nopenena (“cannot see’’)

● Non-degrading untraceability with small-decoy sets.

● Zero-knowledge contract compatibility

● ~80% smaller than QuisQuis

How do we reduce transaction sizes and
verification times?

By replacing the entire cryptographic protocol!

https://eprint.iacr.org/2024/903

Performance Comparison

Not an apple-to-apple comparison!An apple-to-apple comparison!

Maximal
Matching
Problem

tx1: (A, B)
tx2: (A, B)
tx3: (A, B, C)

A Crack in the Firmament

Restoring Soundness of the Orion Proof System

Thomas den Hollander, Daniel Slamanig

05-09-2024

The Orion zk-SNARK [XZS22]

• zk-SNARK based on Brakedown

• Outer SNARK to prove Brakedown relation
• O(N) prover time overall
• log2(N) proof size and verifier time

2

The Orion zk-SNARK [XZS22]

• zk-SNARK based on Brakedown
• Outer SNARK to prove Brakedown relation

• O(N) prover time overall
• log2(N) proof size and verifier time

2

The Orion polynomial commitment

• Polynomial as n×n matrix, encode
rows, commit.

• Take random linear combination of
rows.

• Check

1. c⃗= Enc(y) for some y, inside outer
SNARK.

2. Linear combination of commitment,
for some columns at random.


Enc(x11, . . . ,x1n)
Enc(x21, . . . ,x2n)

. . .
Enc(xn1, . . . ,xnn)



3

The Orion polynomial commitment

• Polynomial as n×n matrix, encode
rows, commit.

• Take random linear combination of
rows.

• Check

1. c⃗= Enc(y) for some y, inside outer
SNARK.

2. Linear combination of commitment,
for some columns at random.

[
γ1 γ2 . . .γn

]
·

Enc(x11, . . . ,x1n)
Enc(x21, . . . ,x2n)

. . .
Enc(xn1, . . . ,xnn)


=[

c1 . . . cn
]

3

The Orion polynomial commitment

• Polynomial as n×n matrix, encode
rows, commit.

• Take random linear combination of
rows.

• Check
1. c⃗= Enc(y) for some y, inside outer

SNARK.

2. Linear combination of commitment,
for some columns at random.

[
γ1 γ2 . . .γn

]
·

Enc(x11, . . . ,x1n)
Enc(x21, . . . ,x2n)

. . .
Enc(xn1, . . . ,xnn)


=[

c1 . . . cn
]

3

The Orion polynomial commitment

• Polynomial as n×n matrix, encode
rows, commit.

• Take random linear combination of
rows.

• Check
1. c⃗= Enc(y) for some y, inside outer

SNARK.
2. Linear combination of commitment,

for some columns at random.

[
γ1 γ2 . . .γn

]
·

Enc(x11, . . . ,x1n)
Enc(x21, . . . ,x2n)

. . .
Enc(xn1, . . . ,xnn)


=[

c1 . . . cn
]

3

The issue

• We need to commit to columns to check linear combination.

• Succinctness ⇒ Only commit to selected columns in outer SNARK
• Or, non-linear prover time

• Soundness ⇒ Select columns at random after committing
• Or, we can cheat by picking y s.t. Enc(y) = c⃗ only at known columns!

• Our solution: use two different column sets
• Breaks zero-knowledge: new randomization
• Other improvements: better efficiency, fix simulator, . . .

4

The issue

• We need to commit to columns to check linear combination.
• Succinctness ⇒ Only commit to selected columns in outer SNARK

• Or, non-linear prover time

• Soundness ⇒ Select columns at random after committing
• Or, we can cheat by picking y s.t. Enc(y) = c⃗ only at known columns!

• Our solution: use two different column sets
• Breaks zero-knowledge: new randomization
• Other improvements: better efficiency, fix simulator, . . .

4

The issue

• We need to commit to columns to check linear combination.
• Succinctness ⇒ Only commit to selected columns in outer SNARK

• Or, non-linear prover time
• Soundness ⇒ Select columns at random after committing

• Or, we can cheat by picking y s.t. Enc(y) = c⃗ only at known columns!

• Our solution: use two different column sets
• Breaks zero-knowledge: new randomization
• Other improvements: better efficiency, fix simulator, . . .

4

The issue

• We need to commit to columns to check linear combination.
• Succinctness ⇒ Only commit to selected columns in outer SNARK

• Or, non-linear prover time
• Soundness ⇒ Select columns at random after committing

• Or, we can cheat by picking y s.t. Enc(y) = c⃗ only at known columns!
• Our solution: use two different column sets

• Breaks zero-knowledge: new randomization
• Other improvements: better efficiency, fix simulator, . . .

4

The issue

• We need to commit to columns to check linear combination.
• Succinctness ⇒ Only commit to selected columns in outer SNARK

• Or, non-linear prover time
• Soundness ⇒ Select columns at random after committing

• Or, we can cheat by picking y s.t. Enc(y) = c⃗ only at known columns!
• Our solution: use two different column sets
• Breaks zero-knowledge: new randomization

• Other improvements: better efficiency, fix simulator, . . .

4

The issue

• We need to commit to columns to check linear combination.
• Succinctness ⇒ Only commit to selected columns in outer SNARK

• Or, non-linear prover time
• Soundness ⇒ Select columns at random after committing

• Or, we can cheat by picking y s.t. Enc(y) = c⃗ only at known columns!
• Our solution: use two different column sets
• Breaks zero-knowledge: new randomization
• Other improvements: better efficiency, fix simulator, . . .

4

Thank you for listening!

[HS] Thomas den Hollander and Daniel Slamanig. A
Crack in the Firmament: Restoring Soundness of the
Orion Proof System and More. URL:
https://eprint.iacr.org/2024/1164.

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song.
“Orion: Zero Knowledge Proof with Linear Prover
Time”. In: CRYPTO 2022, Part IV. Ed. by
Yevgeniy Dodis and Thomas Shrimpton.
Vol. 13510. LNCS. Springer, Cham, Aug. 2022,
pp. 299–328. DOI:
10.1007/978-3-031-15985-5_11.

5

Thomas den Hollander
Quantum Safe & Advanced Cryptography
Research Institute CODE
Universität der Bundeswehr München

thomasdh@unibw.de
https://www.unibw.de/crypto

https://eprint.iacr.org/2024/1164
https://doi.org/10.1007/978-3-031-15985-5_11
mailto:thomasdh@unibw.de
https://www.unibw.de/crypto

	Lightning Talks (Thursday)-3.pdf
	Caroline Sandsbraten 2
	Caveats
	ZKPs in E-Voting
	ZKPs in Distributed Key Generation
	ZKPs in Threshold Signatures
	Summary

	Audhild Hogasen 2
	Slide 1
	Slide 2: Audhild Høgåsen audhild.hoegaasen@post.ch
	Slide 3: Swiss Post Voting System
	Slide 4: Voting phase: Creation of the ballot includes ZK-proofs of correct creation
	Slide 5: Voting phase: Creation of the ballot pseudocode for generating ZK-Proofs of the ballot
	Slide 6: Tally phase: Mix net includes ZK-Proofs of correct shuffle and correct partial decryption
	Slide 7: Tally phase: Mix net sequence diagram and pseudocode for the mixing process
	Slide 8: Future enhanced protocol further ZK-Proofs needed in the setup phase and voting phase
	Slide 9: Do you want to know more about the Swiss Post Voting System?

	Hans Heum
	Emil August Hovd Olaisen
	Artem Grigor 2
	Mahdi Sedaghat
	Slide 1: zkLogin: Onboarding the next billion users to web3
	Slide 2: There are around 100 million active crypto wallets
	Slide 3: and there are several BILLIONS of web2 accounts
	Slide 4: Web3 has an onboarding problem
	Slide 5: Web3 has an onboarding problem
	Slide 6: Web3 has an onboarding problem
	Slide 7: Web3 has an onboarding problem
	Slide 8: Web3 has an onboarding problem
	Slide 9
	Slide 10: Can we make it as easy as signing in with Google, Facebook and co?
	Slide 11
	Slide 12: OpenID Connect (an extension of OAuth 2.0)
	Slide 13: JWT: JSON Web Token
	Slide 14: A Google-issued JWT (decoded)
	Slide 15: zkLogin tricks
	Slide 16: Circuit details
	Slide 17: zkLogin latency
	Slide 18: ZK for authentication How to SNARK sign-in with Google, Apple & FB
	Slide 19: Backup slides
	Slide 20: Naive solution: OAuth + Custodian
	Slide 21: Can we avoid the trusted custodian?
	Slide 22
	Slide 23
	Slide 24: zkLogin
	Slide 25: Challenge 1: How to authorize a tx with a JWT?
	Slide 26: Inject a fresh pub key into JWT!
	Slide 27: Challenge 2: How to identify the user without linking identities?
	Slide 28: Add a persistent randomizer: salt
	Slide 29: Who maintains the salt?
	Slide 30: Challenge 3: How to hide the JWT? SNARKs to the rescue!
	Slide 31: Challenge 4: Prove + RTT in <3s

	Jayamine Alupotha
	Thomas den Hollander
	Introduction
	References

