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Caroline Sandsbraten

» PhD student in Cryptology at NTNU

» Researching lattice-based cryptography
in distributed systems

» Also interested in PQ anonymous SSO
and anonymous credentials

carosa.no

ntnu.edu/employees/caroline.sandsbraten
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» My own work focus mostly on applications of lattice based protocols.

» Most of these applications of zero-knowledge are therefore from the
perspective of general lattice-based applications.

» | have tried to make it applicable to everyone not necessarily interested in

lattices as well, but some parts will include lattice-specific proof
requirements.
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ZKPs in E-Voting
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Zooming in on shuffling
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Zooming in on shuffling
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> Input-output ciphertexts correspondence must be obscured.
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» Input-output ciphertexts correspondence must be obscured.
» The set of output ciphertexts must decrypt to the same set of plaintexts.

» Ciphertext noise must be bounded.
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Zooming in on shuffling
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> Input-output ciphertexts correspondence must be obscured.
» The set of output ciphertexts must decrypt to the same set of plaintexts.
» Ciphertext noise must be bounded.

» Anyone should be able to verify this.
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Zooming in on shuffling
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» Input-output ciphertexts correspondence must be obscured.
> The set of output ciphertexts must decrypt to the same set of plaintexts.
» Ciphertext noise must be bounded.

» Anyone should be able to verify this.

@ NTNU | séonearremonsy



Zooming in on decryption
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Zooming in on decryption
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» Encryption of the plaintexts must be correct.
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Zooming in on decryption
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» Encryption of the plaintexts must be correct.

» Avoiding leaking — requires noise drowning.
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Zooming in on decryption

{c} @ ({dsia})
[ |

@ € TJ}’ {mi}

({dsié'z})

» Encryption of the plaintexts must be correct.

» Avoiding leaking — requires noise drowning.

» Need a subsequent proof that noise drowning has been applied.
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Zooming in on decryption
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» Encryption of the plaintexts must be correct.

» Avoiding leaking — requires noise drowning.

» Need a subsequent proof that noise drowning has been applied.

> Need to prove the well-formedness of ds; ;.
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ZKPs in Distributed Key Generation
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> P, needs to prove that the public key is well-formed and satisfy some
norm bound.
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ZKPs in Distributed Key Generation
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> P, needs to prove that the public key is well-formed and satisfy some
norm bound.

» Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.
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> P, needs to prove that the public key is well-formed and satisfy some
norm bound.

» Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

» The encryptor needs to be able to verify this.
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> P, needs to prove that the public key is well-formed and satisfy some
norm bound.

» Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

» The encryptor needs to be able to verify this.

» The encryptor then needs to prove that the ciphertext is well-formed.
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> P, needs to prove that the public key is well-formed and satisfy some
norm bound.

» Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

» The encryptor needs to be able to verify this.
» The encryptor then needs to prove that the ciphertext is well-formed.

» Again, we would ideally like anyone to be able to verify this.
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ZKPs in Distributed Key Generation

®

> P, needs to prove that the public key is well-formed and satisfy some
norm bound.

» Each party should idealy be able to abort if the key pair of any other party
is not generated correctly.

» The encryptor needs to be able to verify this.
The encryptor then needs to prove that the ciphertext is well-formed.
» Again, we would ideally like anyone to be able to verify this.

v
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ZKPs in Threshold Signatures
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» Prove that the correct randomness is used.
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ZKPs in Threshold Signatures
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» Prove that the correct randomness is used.

» Prove that the partial signatures are well-formed.
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ZKPs in Threshold Signatures
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» Prove that the correct randomness is used.

Comb

» Prove that the partial signatures are well-formed.

» The underlying keypairs should also be proven to be generated correctly.
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ZKPs in Threshold Signatures
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» Prove that the correct randomness is used.

» Prove that the partial signatures are well-formed.

» The underlying keypairs should also be proven to be generated correctly.
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Summary

» Zero-knowledge proofs are a powerful tool in the cryptographic toolbox
for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.
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Summary

» Zero-knowledge proofs are a powerful tool in the cryptographic toolbox
for applications in distributed systems, including but not limited to
distributed key generation, threshold signatures and electronic voting.

» They can be used to prove the correctness of key-generation generation
(and more).

» They can be used to prove well-formedness.

» They can be used to prove certain properties needed to ensure security in
distributed systems.

» They can be used to prove some party has performed some operation in
the excpected way defined by a protocol.
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ZK-Proofs in the Current and Future
Swiss Post Voting System



Audhild Hggasen
audhild.hoegaasen@post.ch

2015-2022 Master’'s Degree Mathematics

Norwegian University of Science and Technology (NTNU)
University of Innsbruck
University of Bern

2022 Master's thesis: Return Codes from Lattice Assumptions
Supervisors: Kristian Gjgsteen and Tjerand Silde

* Short paper: Return Codes from Lattice Assumptions, E-Vote-ID Conference 2022. Joint work with Tjerand Silde.

2022 - current  Team E-Voting at Swiss Post

Bern, Switzerland

* Paper: Improving the Swiss Post Voting System: Practical Experiences from the Independent Examination and
First Productive Election Event, E-Vote-ID Conference 2023.

* Co-supervision of two NTNU-students (2023-2024) for the Master’s thesis Next Generation Electronic Voting
(n Switzerland. Main supervisor: Tjerand Silde.

Swiss Post — Team E-Voting — Audhild Hggasen 05.09.2024



Swiss Post Voting System

The Swiss Post Voting System is
an electronic voting system in
use in national and cantonal
elections in Switzerland.
Cryptographic foundations

Ca 4 elections per year (direct
Description of the mathematical foundations Cryptographic and symbolic analysis democracy). E-voting as
additional (optional) voting
channel. (Most people in

@ rrotocol O Proofs

@ specification @ specification @ specification Switzerland vote by postal
W w -w voting.)
@ source code @ source code @ source code
All documentation
E-voting Crypto-primitives Verifier published on GitLab.
Electronic voting application Library for cryptographic algorithms Vote verification application
In the e-voting setting, NIZK-
E-voting capability Verification capability Proofs play an Important role to

ensure vote secrecy and
verifiability.

Swiss Post e-voting system

Where in the Swiss Post Voting
System are NIZK-Proofs used?

Swiss Post — Team E-Voting — Audhild Hagasen 05.09.2024 3


https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/master/ABOUT.md

Voting phase: Creation of the ballot

includes ZK-proofs of correct creation

Voting Voting

. Ballot
Client — Server

B [ p

Create ballot
* Ciphertext = Encrypt(YES)
* ZK-Proofs

Voter YES

()
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Voting phase: Creation of the ballot

pseudocode for generating ZK-Proofs of the ballot

DWIESS FOSL voung dyswem
System Specification Version 1.4.1

7 ZUZA DWISS FOSL L.

Algorithm 5.4 CreateVote

Context:
Group modulus p ¢ P
Group cardinality g € Ps.t. p = 2g + 1
Group generator g € G,
Election event 1D ee ¢ (Apaseis)'™
Verification card set 1D ves € (Agasers)'™
Verification card ID veig € (Aggaers)'™
Primes mapping table pTable ¢ (72 x (G NP) \ g) x Ayes® x T20)"

and 3.10
Elcction public key ELpy = (ELpao, - -, ELpe s, —1) € Gl
Choice Return Codes encryption public key pkeeg € Gy

Input:
Selected actual voting options ¥4 = (¥g,...,¥¢ 1) € (‘I',"")’ & See section 3.5
k
Selected Write-ins 844 = (R, - - , Br-1) € ((A._..\ ;/)') & See scction 3.7

Verification card secret key kyq € Z,

R o: G orrec Inf ion() — GetCorrec f ion(V44)  © See algorithms 3.6 and 3.7.

The algorithm 3.6 ensures ¥4 is a subset of v and contains no duplicates.
Require: k<4§ -1
Require: |§;|< 1,,Vi € [0,k)

© pTable is of the form
((vo,P0,00,70),- - s (Va1 Pu-1,Fn-1,7Tu-1)) © ¥ and &§ can be derived from pTable using algorithms 3.9

© & = 1, If the ballot box does not have any write-In candidates.
v where [§;] is the character length of §;

Operation: o For all algorithms see the crypto primitives specification
& See algorithm 3.3
& See algorithm 3.19

12 (Poy..y Py—1) ¢ GetEncodedVotingOptions(Vy4)

2 ., Wias-2) ¢ EncodeWritelns(8,4)

3 pe [I75) pimod p

4: r ¢ GenRandominteger(q)

5 E1 = (71,61,0,--,¢1,5-1) ¢ GetCiphertext((p, Wia 0, . ., Wia5-2), 7, Elpa)
[

7

8.

i: for i € [0,y) do
T PCC, ¢ Py mod p
: end for
9: pCCyy = (PCCy4 0, -+ - PClg g 1)
10: v ¢ GenRandominteger(q)
110 E2 = (72,62,0,---,$2,9-1) « GetCiphertext(pCC,,, v, pkcr)
12: E1 ¢ GetCiphertextExponentiation((y1, ¢1.0), ksa)
13: B2 (72, 177, 2,0 mod p)
14: Kig ¢ ¢* mod p
15: iau ¢ (“CreateVote”, vcyy, GetHashContext())
16: aux ¢ (iaus, Integer ToString(yy ), Integer ToString(éy o), - . . , Integer ToString(¢ 5..1))
17: Gyux ¢ (lgux, Integer ToString(72), Integer ToString(dha ), . . . , Integer ToString (¢ y—1))
I8: Tysp ¢ GenExponentiationProof (g, 71, 61,0), ia, (Kuay i $8), fx)
19: procr ¢ 11V Pkoon, wod p
20: Tgqgne ¢ GenPlaintextEqualityProof (E1, E2, ELyy o, PR, (7 - kg, ), buux)

Cryptographic Primitives of the Swiss Post Voting System © 2024 Swiss Post Lud.
Pseudocode Specification Version 1.4.1

Generating and verifying exponentiation proofs The algorithms below are the adapta-
tions of the general case presented in section[10.1} with explicit domains and operations.
Our phi-function defined in ulgorithm@ has domain @, +) and co-domain @', %)
Therefore the operations given as * will be replaced with addition (modulo g), and the
“exponentiation” used in the computation of z is a multiplication; whereas the oper-
ation denoted by ® is multiplication (modulo p) and the exponentiation used in the
computation of ¢’ is a modular exponentiation ill@.

Algorithm 10.8 GenExponentiationProof: Generate a proof of validity for the provided
exponentiation
Context:
Group modulus p € [Pl
Group cardinality g eFlst.p=2-q+1
Input:
A vector of bases g = (9o, - » gn_1) E[CJ* s.t. n €[NT]
The witness - a secret exponent = €
The statement — a vector of exponentiations y = (g, .., ¥p_1) G@‘ sty =g;
An array of optional additional information i,,, € ), s€N

Operation:
1: b « GenRandomlnteger(q) [> See algorithm
2: ¢ + ComputePhiExponentiation(b, g) [> See algorithm
3: £+ (p,q,8)
1: h,y, ¢ (“ExponentiationProof”,i,,,) [> If i, is empty, we omit it
5: e « ByteArrayTolnteger(RecursiveHash(f,y, ¢, h,,,)) [> See algorithms[3.8 and
6: 24~ b+e-x modgq

Output:

Proof (¢, z) €[Z,x[Z]

© See algorithm 3.11

Output:
Encrypted vote E1 = (71,610, ..., #15-1) € G**!
Encrypted partial Choice Return Codes E2 = (42,620, - - -, $2,6-1) € G,*H!
Exponentiated encrypred vote E1 € G,*
Exponentiation proof wge, € Z, x Z,
Plaintext oquality proof mgqee € Zg X Zy”

Swiss Post — Team E-Voting — Audhild Hagasen

Cryptographic Primitives ol the Swiss Post Voling System © 2024 Swiss Post Lud.
Pseudocode Specification Version 1.4.1

Generating and verifying plaintext equality proofs The algorithms below are the adap-
tations of the general case presented in section with explicit domains and opera-
tions. Our phi-function defined in algorithm zls domain @, +) and co-domain
@, x). Therefore the operations given as x will be replaced with addition (modulo g),
and the “exponentiation” used in the computation of z is a multiplication; whereas the
operation denoted by ® is multiplication (modulo p) and the exponentiation used in the
computation of ¢’ is a modular exponentiation in

Algorithm 10.11 GenPlaintextEqualityProof: Generate a proof of equality of the plain-
text corresponding to the two provided encryptions
Context:
Group modulus p €[P
Group cardinality g e[Plst.p=2-q+1
Group generator g E
Input:

The first ciphertext C = (cg,¢;) 6@’
The second ciphertext C’ = (¢, ¢] E[g
The first public key h €

The second public key k' G@

The witness—the randomness used in the encryptions— (r,r’) €
An array of optional additional information i, € (Aycd’)®, s €N
: £ (p,g,9,h, 1)

[> See algorithm [5.2
> See algorithm [10.1
7 e
2y (0,00 )

: h,, « (“"PlaintextEqualityProof”,c,,cy,i,,) > If i,,, is empty, we omit it
: e « ByteArrayTolnteger(RecursiveHash(f,y,c, h,,)) [> See ulgurithms uud
cz 4 (by+e-r,by+e-1)

Operation:
: (by,b,) < GenRandomVector(q, 2)
: ¢ + ComputePhiPlaintextEquality((by,b,), h, h")

2 SO

=N

Output:

Proof (e,z) €[Z] xy

05.09.2024




Tally phase: Mix net

includes ZK-Proofs of correct shuffle and correct partial decryption

VOtIng All Ciphertexts of Mlxmg * Mixed Ciphertexts Mlxmg * Election Result
Server the Election ~ Component * ZK-Proofs Component *ZK-Proofs
= P M <P ) <P
Shuffle, Shuffle,
partially decrypt and partially decrypt and

generate ZK-proofs generate ZK-proofs

Swiss Post — Team E-Voting — Audhild Hagasen 05.09.2024 6



Tally phase: Mix net

sequence diagram and pseudocode for the mixing process

Swiss Post Voting System © 2024 Swiss Post Ltd.
System Specification Version 1.4.1
[comi] [cemz] [coms] [coma]
1 hvey GetMixnetInitialCiphertexts
GetMixnetinitialCiphertexts
= hvca
L] GetMixnetlnitialCiphertexts
M hve | GetMixnetlnitialCiphertexts
= hvey
- ee, bb, hve S
ssnaasd invalid bash B
Cemi, 1 s Femie, ] » Cdec, 1+ Fdec, 1+
vey, Ely, E1y, E2), Wgep |, Tigenc,1
% 5] ee, bb, hve, Coe, 1, Fmix, 1 » Cdec, 1 1 Fdec, 1
... maldproof VerifyMixDecOnline
invalid hash MixDecOnline

Comix, 2y Wimix, 2y Cdec, 2y Wdeoc, 2+
vea, Elg, Ely, E2), Weep 2, Wegrae 2

e ©e, bb, hve, { Comix g, Tming) Cdec.js Ndecy },I 1
H invalid proof VerifyMixDecOnline
MixDecOnline
Comix, 3+ i_tduv Cdec,3s Wdec 3
vey, Ely, Ely, E25, Tiep 3, Fiqencs
e @@, bb, hve, {Cmix,js Fmix,js Cdec. j» Fdec,j 11
invalid proof VerifyMixDecOnline

MixDecOnline

Conix, A3 Fenix, Ay Cdoc 4y Wdoc Ay

veq, Ely, Ely, E24, Texp 4y Feqenc

Fig. 12: Sequence diagram of the MixOnline protocol.

Swiss Post Voting System
System Specification Version 1.4.1

Algorithm 6.3 MixDecOnline

Context:

Group modulus p € P

Group cardinality g € Pst. p=2g + 1

Group generator g € G,

Control component index j € [1,4]

Election event ID ee € (Apgase1s)'™

Ballot box ID bb € (Apgasers)'™

Number of allowed write-ins + 1 for this specific ballot box § € [1,8gp] © Can be derived from

pTable using algorithm 3.10

CCM clection public keys (ELpx,1, ELp, 2, ELpk 3, ELpi 1) € (Gﬁ"‘)4

Electoral board public key EByy € Cg‘“
Stateful Lists and Maps:

List of bb of the shuffled and decrypted ballot boxes Ly
Input: _

Partially decrypted voles Cgec j—1 € (G,,&“)"

CCM; election secret key ELgy j € Zg"'

CCM; hash of the encrypted, confirmed votes hve; € ABascss ™ & From internal view

CCM hashes of the encrypted, confirmed votes hve = (hvcy, hvcy, hvey, hvey) € (Agasess™*)?
Require: hvc; = hvc; = hvey = hveg = hvey b The view of the initial ciphertexts must be the same

for all CCs before mixing begins
Require: Ne > 2
Require: bb ¢ Ly, ;

> CCM; uses Cinit,1 from internal view

© The algorithm runs with at least two votes

Operation: & For all algorithms see the crypto primitives specification
I: ELpx ¢ CombinePublicKeys((ELpx , - -, ELpi 4, EBpx) )

iaux ¢ (ee,bb, “MixDecOnline”, IntegerToString(j))

¢ (Cmix,js Tmix,j) ¢ GenVerifiableShuffle(cgec,j—1, ELpx)

¢ (Cdec,js Tdec,j) ¢ GenVerifiableDecryptions(€mix ;s (ELpk ;s ELak ;) laux)

X Lbbd L L»J Ubb

[ )

Output: )
Shuffled votes cmixj € (G;*+)¥e
Shuffle proof #mix,j > See the domain of the shuffle argument in the crypto primitives specification
Partially decrypted votes cgecj € (G*H')%e
Decryption proofs mgec ; € (Zq % Zq‘)i':

© 2024 Swiss Post Ltd.

Swiss Post — Team E-Voting — Audhild Hagasen
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Future enhanced protocol
further ZK-Proofs needed in the setup phase and voting phase

 Swiss Post is working on an asymmetric distributed protocol for weakening the trust assumptions
on the Setup Component;

« Currently, a trustworthy Setup Component is assumed for vote secrecy and individual verifiability;

* In the enhanced protocol, one offline and multiple online components generate the codes of the
system in a distributed way;

« The enhanced protocol might include

Control Control Control Control
(additional to the primitives already present in current protocol)

. . nt Component Component Component Component
* Mix net in the setup phase % - op = P m <P P
« ZK-proof of same permutation

used in two different shuffles
 Plaintext Equality Tests (PET) Voting material

VOter Voting material ﬁ
&

Swiss Post — Team E-Voting — Audhild Hggasen 05.09.2024



Do you want to know more about the Swiss Post Voting System?

» Find more information about the system and how to contribute on gitlab.com/swisspost-evoting;
« See also Improving the Swiss Post Voting System: Practical Experiences from the Independent
Examination and First Productive Election Event, E-Vote-ID Conference 2023

Community programme
current status (02.08.2024)

| N Since 2021...
Coug boury Y Pubic] « Total reports: 360
SWISS POST - E-VOTING * Findings of “critical” severity: O
Bug Bounty Post - Securing Digital Trust Lastupdateon2024-07-09@ [ Findings Of ”hig h" Severity: 5
« Total rewards paid out: € 198 450
REWARD . _ . _
Bounty  Hall of fame €100 €40,000 | €50,000 -

Swiss Post — Team E-Voting — Audhild Hagasen 05.09.2024 9


https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/master/ABOUT.md
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/master/Reports/e-vote-2023-Improving_the_SwissPostVotingSystem.pdf
https://evoting-community.post.ch/en/contributions

Hans Heum

NTNU



B NTNU | scenctanarecnnoieey

DISTRIBUTED DECRYPTION DERIVED
VERIFIABLE DECRYPTION

Emil August Hovd Olaisen
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Verifiable Decryption

» A system that enables a prover with the secret key to demonstrate that a
ciphertext decrypts to a given message using that key
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Verifiable Decryption

> A system that enables a prover with the secret key to demonstrate that a
ciphertext decrypts to a given message using that key

» Showing that a message encrypts to a ciphertext is something anyone can
do using the public key
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Verifiable Decryption

> A system that enables a prover with the secret key to demonstrate that a
ciphertext decrypts to a given message using that key

» Showing that a message encrypts to a ciphertext is something anyone can
do using the public key

» We want this to be a zero-knowledge proof, it should not leak info about
the secret key, nor be open to forgery

@ NTNU | séonearremonsy



2-Party Distributed Decryption

Given a PKE with algorithms KGen, Enc, Dec we define the algorithms of 2-party
distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk, sk; and
additional auxiliary data aux

@ NTNU | séonearremonsy



2-Party Distributed Decryption

Given a PKE with algorithms KGen, Enc, Dec we define the algorithms of 2-party

distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk, sk; and
additional auxiliary data aux

The verify algorithm (Verify(pk, aux, 7, sk;)) outputs either yes or no
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2-Party Distributed Decryption

Given a PKE with algorithms KGen, Enc, Dec we define the algorithms of 2-party
distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk, sk; and
additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, sk;)) outputs either yes or no
The player algorithm (Play(sk;, ¢)) outputs a decryption share ds;
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2-Party Distributed Decryption

Given a PKE with algorithms KGen, Enc, Dec we define the algorithms of 2-party
distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk, sk; and
additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, sk;)) outputs either yes or no
The player algorithm (Play(sk;, ¢)) outputs a decryption share ds;

The reconstruction algorithm (Rec(c, dsp, ds;)) outputs either an error L or a
message m

@ NTNU | séonearremonsy



2-Party Distributed Decryption

Given a PKE with algorithms KGen, Enc, Dec we define the algorithms of 2-party

distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs two secret key shares sk, sk; and
additional auxiliary data aux

The verify algorithm (Verify(pk, aux, 7, sk;)) outputs either yes or no

The player algorithm (Play(sk;, c)) outputs a decryption share ds;

The reconstruction algorithm (Rec(c, dsp, ds;)) outputs either an error L or a
message m

Correctness

A distributed decryption protocol is correct if on input message m and pk, we
have that all (sk, sk;, aux) generated by the dealer algorithm Deal satisfies
Verify(pk, aux, i,sk;) = 1 fori = 0,1, and that

¢ = Enc(pk, m); Rec(c, Play(skg, ¢), Play(sky,c)) =m

@ NTNU | séoneinrecimons



Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

@ NTNU | séonearremonsy



Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

1. The prover runs Deal o times to create the key shares sk ;,, sky 5, aux; for
1 < k <, they commit to these shares. They also generate

dso,; = Play(skg x, ), ds1 & = Play(sky 4, c) and send the commitments,
decryption share and auxiliary data
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Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)

1. The prover runs Deal a times to create the key shares sk x, sk x, aux;, for
1 < k <, they commit to these shares. They also generate

dso,; = Play(skg x, ), dsy x = Play(sky x,c) and send the commitments,
decryption share and auxiliary data

2. The verifier sends back a vector ¢ € {0,1}*
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Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)
1. The prover runs Deal o times to create the key shares sk ., sky x, aux; for
1 <k < o, they commit to these shares. They also generate
dso,; = Play(skg x, ), ds1 x = Play(sk, ;,c) and send the commitments,
decryption share and auxiliary data

2. The verifier sends back a vector ¢ € {0,1}“
3. The prover sends the secret key shares sk

@ NTNU | séonearremonsy



Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk)
1. The prover runs Deal o times to create the key shares sk ;,, sk; x, aux; for
1 <k < o, they commit to these shares. They also generate
dso,; = Play(skg y, ), ds1x = Play(sky 4, c) and send the commitments,
decryption share and auxiliary data

2. The verifier sends back a vector ¢ € {0,1}*
The prover sends the secret key shares sk, 1

4. For all 1 < k < o the verifier checks if
Rec(c, dso k, ds1k) = m, Play(skyi) 1, ¢) = dsgjx,x and if
Verify(pk, aux, ¢[k], sk 1) holds true

w

@ NTNU | séonearremonsy



Contributions

Verifiable decryption scheme

Encryption scheme

Ciphertext size

Plaintext size

Amortized proof size

Gjosteen et al. [1] BGV 28.2 KB 2048 bits (4883/7 4+ 1.8) MB

Our protocol II, BGV 28.2 KB 2048 bits (2691/7 + 32.8) KB
Lyubashevsky et al. [2] Kyber-512 0.8 KB 256 bits 43.6 KB

Our protocol II, M — LWE 19.9 KB 256 bits (3181/7+4.1) KB

Table: Amortized comparison between verifiable decryption schemes for A = 128.

@ NTNU | séonearremonsy
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Why ZKP on Mobile?

Performance overall has increased
© Recent Advances in ZKP Implementation
¢ Software optimizations, particularly in Multi-Scalar
Multiplication (MSM).
¢ Better developer friendly tooling.
® Mobile devices now rival or exceed modern PCs in
power, enabling practical ZKP implementations.

MacBook Pro (14-inch, 2023) vs iPhone16,1

MacBook Pro (14-inch,
2029) iPhone16,1 Difference

Single-Core Score

2529

Multi-Core Score 12000 7199

Geekbench 6.2.0 Geekbench 6.2.0



Why ZKP on Mobile?
Mobile Phones are now the most used platform

Smartphone PC/Laptop

o_—_o_‘o__—o 95%
87% 88% o‘o\o_o
75%

e os%  oa% 0——0\“\-0
49%

2015 2016 2017 2018 2015 2016 2017 2018

@ Own @ Usetoplay games  ® Consider most important to access the web

Figure: https://blog.gwi.com/trends/device-usage-2019/



ZKP in Action: Identity Verification

¢ KYC: Anon Aadhaar, Myna Wallet.
¢ Voting:

¢ Proof of Humanity on Blockchain: zkPassport,
Proof-of-Passport.

= O verido



ZKP in Action: Data Provenance

* Proof of Funds: Verida.

¢ Proof of Payment: zkP2P.

¢ General Proof of Data/Attribute Provenance:
ZKTLS, zkEmail.

= O verda



Why do Native ZKP on Mobile?

¢ Dominance of native ZKP implementation due to
better performance and security.
e Full utilization of mobile hardware, optimized
resource usage, OS-level security.

SHA256 proof generation (in microsecond)
W rapidsnark arkworks W snarkjs
2,500,000.00

2,000,000.00
1,500,000.00

1,000,000.00

500,000.00 .
0.00

Benchmark result on mobile

RSA circuit witness calculation proof generation
witnesscalclrapidsnark 228 ms (~20x faster) 2672 ms (~5x faster)
snarkjs 5440 ms 13376 ms

circom-witness-rs/ark-works | 25 ms (~10x faster)
witnesscalclrapidsnark 161 ms (~1.7x faster)

snarkjs 276 ms

1177 ms (~10x faster)
2793 ms (~4x faster)

11884 ms



Developer Ecosystem

* Developer Tools: Mopro as a framework to simplify
ZKP development across platforms.

e Technology Stack: Mostly Circom (R1CS +
Groth16), considered alternatives include:

@ Noir DSL (Hyperplonk)
® Halo2 Rust library

<4 How we do that?
e®C ®




Instructions: Scan the QR code to view the live demo or
interact with the application. Focus on how the app
implements ZKP efficiently on mobile.

Mopro Benchmark App link



Performance Benchmark

The benchmark results of running several circuits on
iPhone 14 Pro

12:00 -

< mopro benchmark

< Back

< mopro benchmark

12

Show Proof

sha256

Show Proof
178 ms s Generation time: 0174 5

RSA

Show Proof
2159 ms.

1002ms

3904 ms.

Figure: Comparison of Native and Browser Implementations



Challenges and Future Directions

Challenges:
e High computational cost of SNARKSs.
* Cross-platform restrictions (e.g., iOS WebAssembly
limitations).
e GPU optimization issues (e.g., MSM, 1/O
bottlenecks).
Future Directions:

* Exploring prover-efficient proof systems (e.g.,
STARKS).

» Potential of MPC and surrogate proofs.
e Further optimization and hardware acceleration.



Questions and Discussion

Thank you for your time!

Any Questions?
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zkLogin: Onboarding the
next billion users to web3
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Arnab Roy | Joy Wang

Foundations and Applications of Zero-Knowledge Proofs, Edinburgh, UK



There are around

100 million

active crypto wallets



and there are several

BILLIONS

of web2 accounts



® METAMASK

MNew to MetaMask?

M, | alrgady have g seed phrose Yas, bet's got se

B




Web3 has an onboarding problem




Web3 has an onboarding problem

B METAMASK

Confirm your Secret Backup Phrase




Web3 has an onboarding problem

B METAMASK

B METAMASK Bridge tokens

Conf

From this network To this network

) Ethereum @ Polygon

M, | already have a seed

You send You receive
4 WETH 0.010002

Verified on 4 sources. You can confirm the token oddress
on PolygonScan. @




Y METAMASKE

M, | already have a seed

B¥ METAMASK

petaMask Notification

Signature Request

To this network

@ Polygon

You receive
4 WETH 0.010002

Verified on 4 sources. You can confirm the token oddress
on PolygonScan. @




Mnemonics and keys are not going
to get us mass adoption.

Complexity is the killer of adoption.

The ultimate killer dApp for blockchain, is ac_



Can we make it as easy as S|gn|ng In
with Google, Facebook and co?

® People don’t want to use separate
passwords for each and every app,
each and every web2 service

e Extremely likely they already have a
Google, Facebook, Amazon account

® Solution: use OAuth to leverage these
already existing accounts




zkLogin:
OAuth + Zero Knowledge Proof

Non-custodial
User-friendly
Privacy-preserving



foauth2/v2 Ofauthorize Web

Browser Server

User nav

Redirects id_token to Redirect URI

Returns secure page to user




JWT: JSON Web Token

Base64-encoded, RSA-signed




H

A Google-issued JWT (decoded)

{
“alg": "RS256", { signin with Google
"kid": "96971808796829a972e79a9d1a9fff11lcd6lblel",
“t}‘,p“: IIJH'I'II

H

q{
"iss": "https://accounts.google.com",
"azp": "575519204237-msop9ep45u2u098hapgmngv8d84qdc8k.apps.googleusercontent.com",
"aud": "575519204237—msop9ep45u2u098hapqmngv8d84qdc8k apps.googleusercontent.com",
"sub": "1104634521
"nonce": "1663791881390806026187052890399403872166979961386360161667815 : 89477",
"iat": 1682002642,
“exp": 1682006242, you can ask for email
"jti": "aB8a®728a3ffd5dc8lecfd@ea8ld0d33d803eb830" and other personal info



zkLogin tricks

we could ask
for email too

"iSS": ”h‘xt[;“,jw" CCou C ale.com",
7 c8k.:z n N
LA S.goog

nazpn ]r’r
"aud": UOQLhapqunC¢8d31quu . apps.googleuse

i gleusercontent

575519

70528903994

nsubn: - 21 ,
701881390806 79C 0360161667

“nonce":

"iat":

Ilexpll L
"jti": "aBa@728a3ffd

15dc8lecfd@ea8ld0d33d803eb830"

~hash(providerID + zkhash(walletID + userID + zkhash(salt)))

add salt

inject eph key




- Implemented in circom: ~1M R1CS constraints

- Key operations
- SHA-2 (66%)
- RSA signature verification (14%) using tricks from [KPS18]
- JSON parsing, Poseidon hashing, Base64, extra rules (20%)

- Prover based on rapidsnark

- C++ and Assembly based



zkLogin latency

Ed25519

Fetch salt from salt service NA
Fetch ZKP from ZK service 2.78 s NA
56.3 us

Operation zkLogin

Signature verification

E2E transaction confirmation 3.52s 120.74 ms




Soundness Labs

Q&A
ZK for authentication

How to SNARK sign-in with Google, Apple & FB

Sui docs

Contact: mahdi@soundness.xyz



https://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Backup slides



Naive solution: OAuth + Custodian




——Can wé\a<void the trusted

custodian?
) r\\



zkLogin goodies

Native auth, cheap

Not via smart contracts,
same gas cost as regular

sig verification.

ID-based wallets

Create email or phone

number based accounts.

Can also reveal identity of
an existing account (e.g.,
email) fully or partially
(e.g., reveal a suffix like

@xyz.edu)

Embedded wallet

Mobile apps or websites
can natively integrate
zkLogin without the need

for a wallet popup!

2FA

Can do a 2-out-of-3
between Google, Facebook
and Apple. Salt can also

serve as a second factor.

hash(providerID + zkhash(walletID + userID + zkhash(salt)))

Hard to lose!

Thanks to robust recovery
paths of Google,

Facebook.

+ ZK

proof






zkLogin

single-click accounts w/

G Google
$ Facebook
Twitch

& Apple
== Slack
. Microsoft

native authenticator
non-custodial

*discoverable, claimable
invisible wallets
semi-portable, 2FA



http://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Challenge 1: How to authorize a tx with a JWT?

{
"alg": "RS256",
"kid": "96971808796829a972e79a9d1a9fffllcd6lblel3”,
“typ": "IWT"
hj
{
"iss": "https://accounts.google.com",

"azp": "575519204237-msop9ep45u2uo98hapgmngv8d84qdc8k.apps.googleusercontent.com",
"aud": "575519204237—m5009ep45u2u098hapqmngv8d84qdc8k apps.googleusercontent.com",
"sub": "1104634521

"nonce": “166379188139080602618705289@39940387216697996138@3601616678155512181273289477“
"iat": 1682002642,

"exp": 1682006242,

"jti": "aBa0728a3ffd5dc8lecfd@ea81d0d33d803eb830"

#/s MystenLabs



Inject a fresh pub key into JWT!

{

"alg": "RS256",

"kid": "96971808796829a972e79a9d1a9fff1llcdblble3”, .

"typ": "IWT" replace nonce with
}| user provided data:
{ ephemeral pub key +

) expiration
"iss": "https://accounts.google.com",

"azp": "575519204237-msop9ep45u2uo98hapgmngv8d84qdc8k. apz

"aud": "575519264237-m5009ep45u2u098hapqmngv8d84qdc8k.r

"sub": "1104634521
>"nonce": "16637918813908060261876528903994038721669799613803601616678155512181273289477"

"iat": 1682002642,

"exp": 1682006242,

"jti": "aB8a®728a3ffd5dc8lecfddea81d0d33d803eb830"

Pog Leusvreuncent. com”,
P> .g00gleusercontent.com",

b

W& haye.2 DIGITAL CERT over our fresh key + expiration g_g



Challenge 2: How to identify the user withoyk
linking identities?

we could ask

“iss": "https://accounts.google.com", fOI' email too
“"azp": "575519 37-ms 2u098hapgmngv8d84qdc8k. apps.
“aud": "5 204237-mson9 131,1.2L,09£.hapqrunqvm 84qdc8k.apps.googleusercontent.com"
“sub": 1 21 "

"nonce": y 7918813908060 7052090“”9 3872166979961380360161667815551218127328947

gleusercontent.com"

goo

"iat":
"exp 3 ,
"jti": "aBa0728a3ffd5dc8lecfddea8ld0d33d803eb830"




Add a persistent randomizer: salt

we could ask
"iss": "https://accounts.google.com", for email too
“azp": "575519204237-msop9epd45u2uo98hapqmngv8dB84qdc8k.apps.googleusercontent.com",
“aud": "575519204237-mson9epnd45u2u098hapgmngv8d84qdc8k.apps.googleusercontent.com",
"sub": "1104634521
"nonce": "16637918813908060261870528903994038721669799613803601616678155512181273289477",
"iat": )@
“exp": 168200 ;
"jti": "aBa0728a3ffd5dc8lecfddea8ld0d33d803eb830"

hash(providerID + walletID + userID + salt



Who maintains the salt?

- Client-side on-device management
- Edge cases, e.g., cross-device sync, device loss need handling

- Server-side management by a “salt service”
- Each wallet can maintain their own service / delegate it
- Privacy models: Store salt either in TEE / MPC / plaintext
- Auth policies to the service: Either JWT or 2FA

hash(providerID + walletID + userID + salt




Challenge 3: How to hide the JWT?
SNARKS to the rescue!

we could ask
for email too

"iss": "https://accounts.google.com",

“"azp": "575519204237-msop9ep45u2uo98hapqmngv8d84qdc8k.apps.googleusercontent.com”,
"aud": "575519204237-mson9end45u2u098hapgmngv8d84qdc8k.apps.googleusercontent.com",
"“sub": "1104634521 ”

"nonce": "16637918813908060261870528903994038721669799613803601616678155512181273289477",
"iat": 1€ 42,

"exp": 168: 42,

LY 28a3ffd5dc8lecfddea81d0d33d803eb830"

Goal: Prove you have a valid JWT + you know the salt + you injected the
ephemeral key into JWT

- Verify JWT’s signature using Google’s public key
- Verify the ephemeral public key is injected into the JWT’s nonce
- Verify that the address is derived correctly from the JWT's us alletll

providerID + user’s salt Yellow => private inputs
Blue => public inputs




Challenge 4: Prove + RTT in <3s

- We chose Groth16 due to its small proofs + rich ecosystem + fast prover
- But.. proofs are slow to generate on end-user devices
- Make _: Hand-optimized circuit that selectively parses relevant
parts of the JWT + string slicing tricks + ...

- _ to an untrusted ZKP service

- Open problem: How to delegate with privacy?



Nopenena Untraceable Payments
Defeating Graph Analysis with Small Decoy Sets

Jayamine Alupotha, Mathieu Gestin, and Christian Cachin



Classic Decentralized Payments

Alice (sender) "v' s acc,:10 coins acc,:5 coins

5 coins

[ payment

Bob (receiver) | L l acc,:5 coins acc,:10 coins
N




Decoy-based Confidential Payments

boy
o o acc1:.
[
ﬁ?l:f a002.
' > l acc3:.
A

some
coins

acc,:

{ payment

acc,: i

An example of account-based transactions

Confidentiality O

Untraceability Q

Sender-Anonymity 0

Bob only learns that
Alice owns either
acc, or acc,,.



Full decoy-sets vs. User-defined decoy-sets

Full decoy-set payments User-defined decoy-set payments
Examples: Zerocoin, Zerocash, Examples: Monero, RingCTv2, RingCTv3,
ZCash, Lelantus, and BlockMaze Anonymous Zether, and QuisQuis

Maximal untraceability O Better performance without

trusted setups and no Q

Higher transaction expiration, transaction expiration (!)

trusted setups, and high A Untraceability within small sets

computational cost (may be degrading) Vi i )



Non-degrading Untraceability

e Monero, Ring CT v2, and Ring CT v3 (UTXO) &
e Limited to an epoch: [1][2] and (AccountS)A

e QuisQuis O

[1] Biinz, Benedikt, et al. "Zether: Towards privacy in a smart contract world." International Conference on Financial Cryptography and Data
Security. Cham: Springer International Publishing, 2020.

[2] Diamond, Benjamin E. "Many-out-of-many proofs and applications to anonymous zether." 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021.



QuisQuis

e Non-degrading untraceability with small-decoy sets. O
e Large cryptographic data for validity A
e No “zero-knowledge contracts” A

[3] Fauzi, Prastudy, et al. "Quisquis: A new design for anonymous cryptocurrencies." Advances in Cryptology—ASIACRYPT
2019: 25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part | 25. Springer International Publishing, 2019.



Nopenena (“cannot see”)

e Non-degrading untraceability with small-decoy sets.
e Zero-knowledge contract compatibility 0

e ~80% smaller than QuisQuis

How do we reduce transaction sizes and
verification times? -
| | |

By replacing the entire cryptographic protocol!

"u
https://eprint.iacr.org/2024/903



Performance Comparison

. Nopenena ® QuisQuis Zether ® Nopenena (meazsutrhed)( [ ] QUISle;IS (quoted [17])
ether (measure
a 20
v ’(I? 4032
— E 1000 e
L )
0 & g 69 72
c 6 = 100 :
9 {2 26
= o
O - 12
© 4 » =
10
o 5
o, N = 1
4 8 16 4
|Accounts|

|Accounts|

An apple-to-apple comparison! Not an apple-to-apple comparison!



Maximal
Matching
Problem

tx1: (A, B)
tx2: (A, B)
tx3: (A, B, C)

Maximal Matching Problem in

Monero/Zether

First solution for the problem in

Maximal Matching Problem in Nopenena and
QuisQuis

One of the possible solutions in
Monero/Zether Nopenena/QuisQuis that is impossible in Zether

Second solution for the problem in Monero/Zether

Each

has capacity of 1 Each —has capacity of 1 or 3

- is a potential link between parties and transaction of capacity 1.



: Expirin No Trusted | DoS Attack | Graph Analysis | Non-monotonic | Contract

Protocol Untrageabile Contiential Prolfabili%y Setup Resistance RIZSistancZ Set of Assets Support
Zerocoin [42] Maximal O High O @) [ ([ O
ZCash [29] Maximal ® High O @) ® O ©)
Lelantus [31] Maximal ® High ® O ® O O
Mimblewimble [30] No ® Zero ] - - ® O
Monero [46], [34, 60] Degrading ® Zero ® ) O O O
Ring CT v.2 [54] Degrading ® Zero O @® O O O
Zether [9, 15] Degrading (epoch) ® High L O D ® L
QuisQuis [19] Non-degrading ® Low ® O L ® O
PriDe CT [26] Degrading (epoch) ® High ® O D ® [ ]
PriFHEte [39] Maximal [ High ® O ® [ O
Nopenena (this paper) Non-degrading ® Low ® ® [ ® [ ]

Table 1: A Comparison of Related Work. Here, expiring probability means the probability of a transaction expiring due to epochs or updated assets. We use
O to denote DM-decomposition limited to epochs.




Research Institute

A GRACK IN THE FIRMAMENT

Restoring Soundness of the Orion Proof System

Thomas den Hollander, Daniel Slamanig

05-09-2024



THE ORION ZK-SNARK [XZS22]

e zk-SNARK based on Brakedown



THE ORION ZK-SNARK [XZS22]

® 7k-SNARK based on Brakedown
® Quter SNARK to prove Brakedown relation

® O(N) prover time overall
* log?(N) proof size and verifier time



THE ORION POLYNOMIAL COMMITMENT

e Polynomial as n x n matrix, encode
rows, commit.

|

Enc(xp1, ...



THE ORION POLYNOMIAL COMMITMENT

¢ Polynomial as n x n matrix, encode n 7w
rows, commit. .

® Take random linear combination of Enc(x11,...,X1p)
rows. Enc(x21,...,X2n)

Enc(Xn1,---,Xnn)

a1 ...



THE ORION POLYNOMIAL COMMITMENT

e Polynomial as n x n matrix, encode
rows, commit.

e Take random linear combination of

rows.
e Check
1. ¢ = Enc(y) for some y, inside outer
SNARK.

n %

Enc(x11,
Enc(x21,

EnC(an,

)

R ,Xln)
cee ,in)

c s Xnn)

[T

Cn|



THE ORION POLYNOMIAL COMMITMENT

e Polynomial as n x n matrix, encode
rows, commit.

e Take random linear combination of

rows.
e Check
1. ¢ = Enc(y) for some y, inside outer
SNARK.

2. Linear combination of commitment,
for some columns at random.

n %

Enc(x11,
Enc(x21,

EnC(an,

)

R ,Xln)
cee ,in)

c s Xnn)

[T

Cn|



THE ISSUE

¢ We need to commit to columns to check linear combination.



THE ISSUE

® We need to commit to columns to check linear combination.
® Succinctness = Only commit to selected columns in outer SNARK
® Or, non-linear prover time



THE ISSUE

® We need to commit to columns to check linear combination.

® Succinctness = Only commit to selected columns in outer SNARK
® Or, non-linear prover time

® Soundness = Select columns at random after committing
¢ Or, we can cheat by picking y s.t. Enc(y) = ¢ only at known columns!



THE ISSUE

We need to commit to columns to check linear combination.
Succinctness = Only commit to selected columns in outer SNARK
® Or, non-linear prover time
Soundness =- Select columns at random after committing
¢ Or, we can cheat by picking y s.t. Enc(y) = ¢ only at known columns!

Our solution: use two different column sets



THE ISSUE

We need to commit to columns to check linear combination.
Succinctness = Only commit to selected columns in outer SNARK
® Or, non-linear prover time
Soundness =- Select columns at random after committing
¢ Or, we can cheat by picking y s.t. Enc(y) = ¢ only at known columns!

Our solution: use two different column sets
® Breaks zero-knowledge: new randomization



THE ISSUE

We need to commit to columns to check linear combination.
Succinctness = Only commit to selected columns in outer SNARK
® Or, non-linear prover time
Soundness =- Select columns at random after committing
¢ Or, we can cheat by picking y s.t. Enc(y) = ¢ only at known columns!

Our solution: use two different column sets
® Breaks zero-knowledge: new randomization

Other improvements: better efficiency, fix simulator, ...



THANK YOU FOR LISTENING!
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