Heterogeneity in soft matter Does it matter?

RWAM - 13th January 2025 Zoe Godard

Oxford Centre for Industrial and Applied Maths Wolfson Centre for Mathematical Biology

Oxford Mathematics

Institute

SarahWaters

Derek Moultón

Tissues connecting muscle to bone Withstand large tensile loads

Tendinopathy Common, painful condition **Overuse** injury / disease Altered tissue structure, composition and volume

Wong M, Jardaly AH, Kiel J. Anatomy, Bony Pelvis and Lower Limb: Achilles Tendon. [Updated 2023 Aug 8]. In: StatPearls [Internet]

How does material heterogeneity affect the response of a porous material to cyclical pulling?

Heterogeneity

 $M_d(Z) = f(Z)$

M Stiffness

undamaged

damaged

APPLIED LOAD - STRAIN / POROSITY RESPONSE (medium frequency)

$$\frac{\partial U}{\partial Z} = \Phi - \Phi_0 \qquad \text{Strain}$$

- Fluid enters when pulled, exits when let go
 Positive feedback loop from porosity-dependent
 - permeability
- Strain / porosity maintained as $Z \rightarrow 1$

APPLIED LOAD - STRAIN / POROSITY RESPONSE (medium frequency)

Strain increases around point of damage

APPLIED DISPLACEMENT - FLUX RESPONSE (medium frequency)

Q Relative Flow

Fluid enters when pulled, exits when pushed back No flux at Z = 0

APPLIED DISPLACEMENT - FLUX RESPONSE (medium frequency)

Generated flux into damaged region due to stress gradient (mostly)

How can we characterise how the response changes with frequency, damage magnitude and location?

APPLIED DISPLACEMENT, varying loading frequency

• Slower loading results in greater flux

APPLIED DISPLACEMENT, varying loading frequency & location

Broader context and future directions

- Many parameters and variables to play with: which ones are important? •
- Informed by context of problem
- Aim: build a more accurate model for tendon

Thorpe, C. T. et al. (2015), Tendon regeneration

<u>Tendon stress-</u> strain curve

Thank you for listening! Any questions?

contact: zoe.godard@seh.ox.ac.uk

Oxford Mathematics

Mathematical Institute

Sarah Waters

Derek Moulton

