Some conjectures concerning the zeros of the deformed exponential function

Alan Sokal University College London

Eremenko70 Fest @ Edinburgh Classical Function Theory in Modern Mathematics 1-5 July 2024

More details: 4 talks at Queen Mary University of London, 2011 https://webspace.maths.qmul.ac.uk/p.j.cameron/csgnotes/sokal/

• Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \le 1$

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \le 1$
- Entire in x for each $y \in \mathbb{D}$

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \le 1$
- Entire in x for each $y \in \mathbb{D}$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \leq 1$
- Entire in x for each $y \in \mathbb{D}$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \mathbb{D}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \leq 1$
- Entire in x for each $y \in \mathbb{D}$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \mathbb{D}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \le 1$
- Entire in x for each $y \in \mathbb{D}$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

Applications:

Statistical mechanics: Partition function of one-site lattice gas

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \le 1$
- Entire in x for each $y \in \mathbb{D}$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

- Statistical mechanics: Partition function of one-site lattice gas
- Combinatorics: Generating function for Tutte polynomials on K_n (also acyclic digraphs, inversions of trees, ...)

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \le 1$
- Entire in x for each $y \in \mathbb{D}$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

- Statistical mechanics: Partition function of one-site lattice gas
- Combinatorics: Generating function for Tutte polynomials on K_n (also acyclic digraphs, inversions of trees, ...)
- Functional-differential equation: F'(x) = F(yx) where $Y' = \partial/\partial x$

- Deformed exponential function $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$
- Defined for complex x and y satisfying $|y| \le 1$
- Entire in x for each $y \in \mathbb{D}$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

- Statistical mechanics: Partition function of one-site lattice gas
- Combinatorics: Generating function for Tutte polynomials on K_n (also acyclic digraphs, inversions of trees, ...)
- Functional-differential equation: F'(x) = F(yx) where $Y' = \partial/\partial x$
- Complex analysis: Whittaker and Goncharov constants

• Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge

- Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge
- No explicit formula is known

- Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge
- No explicit formula is known
- But we can find the exponential generating function.

- Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge
- No explicit formula is known
- But we can find the exponential generating function.
- Let $A_n(v)$ = generating polynomial for all graphs . . .

- Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge
- No explicit formula is known
- But we can find the exponential generating function.
- Let $A_n(v)$ = generating polynomial for all graphs ...
- Obviously $A_n(v) = (1+v)^{n(n-1)/2}$

- Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge
- No explicit formula is known
- But we can find the exponential generating function.
- Let $A_n(v)$ = generating polynomial for all graphs . . .
- Obviously $A_n(v) = (1+v)^{n(n-1)/2}$
- Exponential formula:

$$\sum_{n=1}^{\infty} C_n(v) \frac{x^n}{n!} = \log \left(\sum_{n=0}^{\infty} A_n(v) \frac{x^n}{n!} \right) = \log F(x, 1+v)$$

- Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge
- No explicit formula is known
- But we can find the exponential generating function.
- Let $A_n(v)$ = generating polynomial for all graphs . . .
- Obviously $A_n(v) = (1+v)^{n(n-1)/2}$
- Exponential formula:

$$\sum_{n=1}^{\infty} C_n(v) \frac{x^n}{n!} = \log \left(\sum_{n=0}^{\infty} A_n(v) \frac{x^n}{n!} \right) = \log F(x, 1+v)$$

Usually considered as formal power series in x

- Let $C_n(v)$ = generating polynomial for connected graphs on n labeled vertices, weight v per edge
- No explicit formula is known
- But we can find the exponential generating function.
- Let $A_n(v)$ = generating polynomial for all graphs . . .
- Obviously $A_n(v) = (1+v)^{n(n-1)/2}$
- Exponential formula:

$$\sum_{n=1}^{\infty} C_n(v) \frac{x^n}{n!} = \log \left(\sum_{n=0}^{\infty} A_n(v) \frac{x^n}{n!} \right) = \log F(x, 1+v)$$

- Usually considered as formal power series in x
- But series are *convergent* if $|1 + v| \le 1$

•
$$y = 0$$
: $F(x, 0) = 1 + x$

- y = 0: F(x, 0) = 1 + x
- 0 < |y| < 1: Nonpolynomial entire function of order 0:

$$F(x,y) = \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right)$$
 with $\sum |x_k(y)|^{-\alpha} < \infty$ for all $\alpha > 0$

- y = 0: F(x, 0) = 1 + x
- 0 < |y| < 1: Nonpolynomial entire function of order 0:

$$F(x,y) = \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right)$$
 with $\sum |x_k(y)|^{-\alpha} < \infty$ for all $\alpha > 0$

• y = 1: $F(x, 1) = e^x$

- $\mathbf{v} = \mathbf{0}$: F(x, 0) = 1 + x
- 0 < |y| < 1: Nonpolynomial entire function of order 0:

$$F(x,y) = \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right)$$
 with $\sum |x_k(y)|^{-\alpha} < \infty$ for all $\alpha > 0$

- $\mathbf{v} = \mathbf{1}$: $F(x, 1) = e^x$
- |y| = 1 with $y \neq 1$: Entire function of order 1 and type 1:

$$F(x,y) = e^x \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right) e^{x/x_k(y)}$$
 with $\sum |x_k(y)|^{-\alpha} < \infty$ for all $\alpha > 1$

[Ålander (1914) for y a root of unity;

Valiron (1938) and Eremenko-Ostrovskii (2007) for y not a root of unity

- $\mathbf{v} = \mathbf{0}$: F(x, 0) = 1 + x
- 0 < |y| < 1: Nonpolynomial entire function of order 0:

$$F(x,y) = \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right)$$
 with $\sum |x_k(y)|^{-\alpha} < \infty$ for all $\alpha > 0$

- $\mathbf{v} = \mathbf{1}$: $F(x, 1) = e^x$
- |y| = 1 with $y \neq 1$: Entire function of order 1 and type 1:

$$F(x,y) = e^x \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right) e^{x/x_k(y)}$$
 with $\sum |x_k(y)|^{-\alpha} < \infty$ for all $\alpha > 1$

[Alander (1914) for y a root of unity; Valiron (1938) and Eremenko-Ostrovskii (2007) for y not a root of unity

• |y| > 1: Series $F(\cdot, y)$ has radius of convergence 0

Consequences for $\overline{C_n(v)}$

• Make change of variables y = 1 + v: $\overline{C}_n(y) = C_n(y-1)$

- Make change of variables y = 1 + v: $\overline{C}_n(y) = C_n(y-1)$
- For |y| < 1 we have

$$\sum_{n=1}^{\infty} \overline{C}_n(y) \frac{x^n}{n!} = \log F(x, y) = \sum_{k} \log \left(1 - \frac{x}{x_k(y)}\right)$$

- Make change of variables y = 1 + v: $\overline{C}_n(y) = C_n(y-1)$
- For |y| < 1 we have

$$\sum_{n=1}^{\infty} \overline{C}_n(y) \frac{x^n}{n!} = \log F(x, y) = \sum_{k} \log \left(1 - \frac{x}{x_k(y)}\right)$$

and hence

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$
 for all $n \ge 1$

- Make change of variables y = 1 + v: $\overline{C}_n(y) = C_n(y-1)$
- For |y| < 1 we have

$$\sum_{n=1}^{\infty} \overline{C}_n(y) \frac{x^n}{n!} = \log F(x,y) = \sum_{k} \log \left(1 - \frac{x}{x_k(y)}\right)$$

and hence

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$
 for all $n \ge 1$

• This is a convergent expansion for $\overline{C}_n(y)$

Consequences for $\overline{C_n(v)}$

- Make change of variables y = 1 + v: $\overline{C}_n(y) = C_n(y-1)$
- For |y| < 1 we have

$$\sum_{n=1}^{\infty} \overline{C}_n(y) \frac{x^n}{n!} = \log F(x, y) = \sum_{k} \log \left(1 - \frac{x}{x_k(y)}\right)$$

and hence

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$
 for all $n \ge 1$

- This is a convergent expansion for $\overline{C}_n(y)$
- In particular, gives large-n asymptotic behavior

$$\overline{C}_n(y) = -(n-1)! \times_0(y)^{-n} \left[1 + O(e^{-\epsilon n})\right]$$

whenever $F(\cdot, y)$ has a unique root $x_0(y)$ of minimum modulus

Consequences for $\overline{C_n(v)}$

- Make change of variables y = 1 + v: $\overline{C}_n(y) = C_n(y-1)$
- For |y| < 1 we have

$$\sum_{n=1}^{\infty} \overline{C}_n(y) \frac{x^n}{n!} = \log F(x, y) = \sum_{k} \log \left(1 - \frac{x}{x_k(y)}\right)$$

and hence

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$
 for all $n \ge 1$

- This is a convergent expansion for $\overline{C}_n(y)$
- In particular, gives large-n asymptotic behavior

$$\overline{C}_n(y) = -(n-1)! x_0(y)^{-n} [1 + O(e^{-\epsilon n})]$$

whenever $F(\cdot, y)$ has a unique root $x_0(y)$ of minimum modulus

Question: What can we say about the roots $x_k(y)$?

Small-y expansion of roots $x_k(y)$

Small-y expansion of roots $x_k(y)$

• For small |y|, we have F(x,y) = 1 + x + O(y), so expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

• For small |y|, we have F(x, y) = 1 + x + O(y), so expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

• For small |y|, we have F(x,y) = 1 + x + O(y), so expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

• More generally, for each integer $k \ge 0$, write $x = \xi y^{-k}$ and study

$$F_k(\xi, y) = y^{k(k+1)/2} F(\xi y^{-k}, y) = \sum_{n=0}^{\infty} \frac{\xi^n}{n!} y^{(n-k)(n-k-1)/2}$$

• For small |y|, we have F(x,y) = 1 + x + O(y), so expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

• More generally, for each integer $k \ge 0$, write $x = \xi y^{-k}$ and study

$$F_k(\xi, y) = y^{k(k+1)/2} F(\xi y^{-k}, y) = \sum_{n=0}^{\infty} \frac{\xi^n}{n!} y^{(n-k)(n-k-1)/2}$$

• Sum dominated by terms n = k and n = k + 1: gives root

$$x_k(y) = -(k+1) y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n \right]$$

• For small |y|, we have F(x,y) = 1 + x + O(y), so expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

• More generally, for each integer $k \ge 0$, write $x = \xi y^{-k}$ and study

$$F_k(\xi, y) = y^{k(k+1)/2} F(\xi y^{-k}, y) = \sum_{n=0}^{\infty} \frac{\xi^n}{n!} y^{(n-k)(n-k-1)/2}$$

• Sum dominated by terms n = k and n = k + 1: gives root

$$x_k(y) = -(k+1)y^{-k}\left[1+\sum_{n=1}^{\infty}a_n^{(k)}y^n\right]$$

• Rouché argument valid for $|y| \lesssim 0.207875$ uniformly in k: all roots are simple and given by convergent expansion $x_k(y)$

• For small |y|, we have F(x,y) = 1 + x + O(y), so expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

• More generally, for each integer $k \ge 0$, write $x = \xi y^{-k}$ and study

$$F_k(\xi, y) = y^{k(k+1)/2} F(\xi y^{-k}, y) = \sum_{n=0}^{\infty} \frac{\xi^n}{n!} y^{(n-k)(n-k-1)/2}$$

• Sum dominated by terms n = k and n = k + 1: gives root

$$x_k(y) = -(k+1)y^{-k}\left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n\right]$$

- Rouché argument valid for $|y| \lesssim 0.207875$ uniformly in k: all roots are simple and given by convergent expansion $x_k(y)$
- Can also use theta function in Rouché (Eremenko)

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

Collision of roots (→ branch point)

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

- Collision of roots (→ branch point)
- Root escaping to infinity

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

- Collision of roots (→ branch point)
- Root escaping to infinity

Theorem (Eremenko 2009, unpublished)

No root can escape to infinity for y in the open unit disc \mathbb{D} .

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

- Collision of roots (→ branch point)
- Root escaping to infinity

Theorem (Eremenko 2009, unpublished)

For any compact $K \subset \mathbb{D}$ and any $\epsilon > 0$, \exists integer k_0 such that for all $y \in K \setminus \{0\}$ we have:

- (a) The function $F(\cdot, y)$ has exactly k_0 zeros (counting multiplicity) in the disc $|x| < k_0 |y|^{-(k_0 - \frac{1}{2})}$, and
- (b) In $|x| \ge k_0 |y|^{-(k_0 \frac{1}{2})}$, the function $F(\cdot, y)$ has a simple zero within a factor $1 + \epsilon$ of $-(k+1)y^{-k}$ for each $k \ge k_0$, and no other zeros.

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

- Collision of roots (→ branch point)
- Root escaping to infinity

Theorem (Eremenko 2009, unpublished)

For any compact $K \subset \mathbb{D}$ and any $\epsilon > 0$, \exists integer k_0 such that for all $y \in K \setminus \{0\}$ we have:

- (a) The function $F(\cdot, y)$ has exactly k_0 zeros (counting multiplicity) in the disc $|x| < k_0 |y|^{-(k_0 - \frac{1}{2})}$, and
- (b) In $|x| > k_0 |y|^{-(k_0 \frac{1}{2})}$, the function $F(\cdot, y)$ has a simple zero within a factor $1 + \epsilon$ of $-(k+1)y^{-k}$ for each $k \ge k_0$, and no other zeros.
 - Proof is based on comparison with a theta function (whose roots are known by virtue of Jacobi's product formula)

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

- Collision of roots (→ branch point)
- Root escaping to infinity

Theorem (Eremenko 2009, unpublished)

For any compact $K \subset \mathbb{D}$ and any $\epsilon > 0$, \exists integer k_0 such that for all $y \in K \setminus \{0\}$ we have:

- (a) The function $F(\cdot,y)$ has exactly k_0 zeros (counting multiplicity) in the disc $|x| < k_0|y|^{-(k_0-\frac{1}{2})}$, and
- (b) In $|x| \ge k_0 |y|^{-(k_0 \frac{1}{2})}$, the function $F(\cdot, y)$ has a simple zero within a factor $1 + \epsilon$ of $-(k+1)y^{-k}$ for each $k \ge k_0$, and no other zeros.
 - Proof is based on comparison with a theta function (whose roots are known by virtue of Jacobi's product formula)
 - Conjecture that roots cannot escape to infinity even in the *closed* unit disc except at y = 1

Big Conjecture #1. All roots of $F(\cdot, y)$ are simple for |y| < 1. [that is, there are no collisions]

Big Conjecture #1. All roots of $F(\cdot, y)$ are simple for |y| < 1. [and also for |y| = 1, I suspect] [that is, there are no collisions]

Consequence of Big Conjecture #1.

Each root $x_k(y)$ is analytic in |y| < 1.

```
Big Conjecture #1. All roots of F(\cdot, y) are simple for |y| < 1.
     [and also for |y| = 1, I suspect] [that is, there are no collisions]
```

Consequence of Big Conjecture #1.

Each root $x_k(y)$ is analytic in |y| < 1.

But I conjecture more . . .

Big Conjecture #1. All roots of $F(\cdot, y)$ are simple for |y| < 1. [and also for |y| = 1, I suspect] [that is, there are no collisions]

Consequence of Big Conjecture #1.

Each root $x_k(y)$ is analytic in |y| < 1.

But I conjecture more . . .

Big Conjecture #2. The roots of $F(\cdot, y)$ are non-crossing in modulus for |y| < 1:

$$|x_0(y)| < |x_1(y)| < |x_2(y)| < \dots$$

[and also for |y| = 1, I suspect]

Big Conjecture #1. All roots of $F(\cdot, y)$ are simple for |y| < 1. [and also for |y| = 1, I suspect] [that is, there are no collisions]

Consequence of Big Conjecture #1.

Each root $x_k(y)$ is analytic in |y| < 1.

But I conjecture more . . .

Big Conjecture #2. The roots of $F(\cdot, y)$ are non-crossing in modulus for |v| < 1:

$$|x_0(y)| < |x_1(y)| < |x_2(y)| < \dots$$

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually separated in modulus by a factor at least |y|, i.e.

$$|x_k(y)| < |y| |x_{k+1}(y)|$$
 for all $k \ge 0$

PROOF. Apply the Schwarz lemma to $x_k(y)/x_{k+1}(y)$.

• Recall that
$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$

Consequences for the zeros of $C_n(y)$

- Recall that $\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$
- Use a variant of the Beraha-Kahane-Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2]

- Recall that $\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$
- Use a variant of the Beraha–Kahane–Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2]
- \implies the limit points of zeros of \overline{C}_n are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is *nonunique*.

- Recall that $\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$
- Use a variant of the Beraha–Kahane–Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2]
- \implies the limit points of zeros of \overline{C}_n are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is *nonunique*.
- \implies If $F(\cdot, y)$ has a unique zero of minimum modulus for all $y \in \mathbb{D}$ (a weakened form of **Big Conjecture** #2), then the zeros of $\overline{C}_n(y)$ do not accumulate anywhere in the open unit disc.

- Recall that $\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$
- Use a variant of the Beraha–Kahane–Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2]
- \implies the limit points of zeros of \overline{C}_n are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is *nonunique*.
- \implies If $F(\cdot, y)$ has a unique zero of minimum modulus for all $y \in \mathbb{D}$ (a weakened form of **Big Conjecture** #2), then the zeros of $\overline{C}_n(y)$ do not accumulate anywhere in the open unit disc.

But I actually conjecture more (based on computations up to $n \approx 80$):

- Recall that $\overline{C}_n(y) = -(n-1)! \sum_i x_k(y)^{-n}$
- Use a variant of the Beraha–Kahane–Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2]
- \implies the limit points of zeros of \overline{C}_n are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is *nonunique*.
- \Longrightarrow If $F(\cdot, y)$ has a unique zero of minimum modulus for all $y \in \mathbb{D}$ (a weakened form of **Big Conjecture #2**), then the zeros of $\overline{C}_n(v)$ do not accumulate anywhere in the open unit disc.

But I actually conjecture more (based on computations up to $n \approx 80$):

Big Conjecture #3. For each n, $\overline{C}_n(y)$ has no zeros with |y| < 1. [and, I suspect, no zeros with |y| = 1 except the point y = 1]

• Evidence #1: Behavior at real y.

• Evidence #1: Behavior at real y.

Theorem (Laguerre)

For $0 \le y < 1$, all the roots of $F(\cdot, y)$ are simple and negative real.

• Evidence #1: Behavior at real y.

Theorem (Laguerre)

For $0 \le y < 1$, all the roots of $F(\cdot, y)$ are simple and negative real.

Corollary

Each root $x_k(y)$ is analytic in a complex neighborhood of the interval [0,1).

• Evidence #1: Behavior at real y.

Theorem (Laguerre)

For $0 \le y < 1$, all the roots of $F(\cdot, y)$ are simple and negative real.

Corollary

Each root $x_k(y)$ is analytic in a complex neighborhood of the interval [0, 1).

Now combine this with

• Evidence #1: Behavior at real y.

Theorem (Laguerre)

For $0 \le y < 1$, all the roots of $F(\cdot, y)$ are simple and negative real.

Corollary

Each root $x_k(y)$ is analytic in a complex neighborhood of the interval [0, 1).

Now combine this with

• Evidence #2: From numerical computation of the series $x_k(y)$...

1. Insert
$$x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n\right]$$
 and solve term-by-term.

- 1. Insert $x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n\right]$ and solve term-by-term.
- 2. Use "explicit implicit function theorem" (generalization of Lagrange inversion formula) given in A.D.S., arXiv:0902.0069.

- 1. Insert $x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n\right]$ and solve term-by-term.
- 2. Use "explicit implicit function theorem" (generalization of Lagrange inversion formula) given in A.D.S., arXiv:0902.0069.

Methods 1 and 2 also work symbolically in k.

Four methods for computing the series $x_k(y)$

- 1. Insert $x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n\right]$ and solve term-by-term.
- 2. Use "explicit implicit function theorem" (generalization of Lagrange inversion formula) given in A.D.S., arXiv:0902.0069.

Methods 1 and 2 also work symbolically in k.

3. Use $\overline{C}_n(y) = -(n-1)! \sum_{k} x_k(y)^{-n}$ together with recurrence

$$\overline{C}_n(y) = y^{n(n-1)/2} - \sum_{j=1}^{n-1} {n-1 \choose j-1} \overline{C}_j(y) y^{(n-j)(n-j-1)/2}$$

 \longrightarrow I went to $n \approx 900$ for k = 0 (can go less far as k increases)

Four methods for computing the series $x_k(y)$

- 1. Insert $x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n\right]$ and solve term-by-term.
- 2. Use "explicit implicit function theorem" (generalization of Lagrange inversion formula) given in A.D.S., arXiv:0902.0069.

Methods 1 and 2 also work symbolically in k.

3. Use $\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$ together with recurrence

$$\overline{C}_n(y) = y^{n(n-1)/2} - \sum_{j=1}^{n-1} {n-1 \choose j-1} \overline{C}_j(y) y^{(n-j)(n-j-1)/2}$$

- \longrightarrow I went to $n \approx 900$ for k = 0 (can go less far as k increases)
- 4. Use Dandelin-Lobachevskii-Graeffe iteration (repeated squaring)
 - \longrightarrow I went to n = 65535 for k = 0

$$\begin{array}{lll} -x_0(y) & = & 1 + \frac{1}{2}y + \frac{1}{2}y^2 + \frac{11}{24}y^3 + \frac{11}{24}y^4 + \frac{7}{16}y^5 + \frac{7}{16}y^6 \\ & & + \frac{493}{1152}y^7 + \frac{163}{384}y^8 + \frac{323}{768}y^9 + \frac{1603}{3840}y^{10} + \frac{57283}{138240}y^{11} \\ & & + \frac{170921}{414720}y^{12} + \frac{340171}{829440}y^{13} + \frac{22565}{55296}y^{14} \\ & & + \ldots + \text{terms through order } y^{65535} \end{array}$$

and all the coefficients (so far) are nonnegative!

$$\begin{array}{lll} -x_0(y) & = & 1 + \frac{1}{2}y + \frac{1}{2}y^2 + \frac{11}{24}y^3 + \frac{11}{24}y^4 + \frac{7}{16}y^5 + \frac{7}{16}y^6 \\ & & + \frac{493}{1152}y^7 + \frac{163}{384}y^8 + \frac{323}{768}y^9 + \frac{1603}{3840}y^{10} + \frac{57283}{138240}y^{11} \\ & & + \frac{170921}{414720}y^{12} + \frac{340171}{829440}y^{13} + \frac{22565}{55296}y^{14} \\ & & + \ldots + \text{terms through order } y^{65535} \end{array}$$

and all the coefficients (so far) are nonnegative!

Big Conjecture #4.

For each k, the series $-x_k(y)$ has all nonnegative coefficients.

$$\begin{array}{lll} -x_0(y) & = & 1 + \frac{1}{2}y + \frac{1}{2}y^2 + \frac{11}{24}y^3 + \frac{11}{24}y^4 + \frac{7}{16}y^5 + \frac{7}{16}y^6 \\ & & + \frac{493}{1152}y^7 + \frac{163}{384}y^8 + \frac{323}{768}y^9 + \frac{1603}{3840}y^{10} + \frac{57283}{138240}y^{11} \\ & & + \frac{170921}{414720}y^{12} + \frac{340171}{829440}y^{13} + \frac{22565}{55296}y^{14} \\ & & + \ldots + \text{terms through order } y^{65535} \end{array}$$

and all the coefficients (so far) are nonnegative!

Big Conjecture #4.

For each k, the series $-x_k(y)$ has all nonnegative coefficients.

Combine this with the known analyticity for $0 \le y < 1$, and Vivanti-Pringsheim gives:

$$\begin{array}{lll} -x_0(y) & = & 1 + \frac{1}{2}y + \frac{1}{2}y^2 + \frac{11}{24}y^3 + \frac{11}{24}y^4 + \frac{7}{16}y^5 + \frac{7}{16}y^6 \\ & & + \frac{493}{1152}y^7 + \frac{163}{384}y^8 + \frac{323}{768}y^9 + \frac{1603}{3840}y^{10} + \frac{57283}{138240}y^{11} \\ & & + \frac{170921}{414720}y^{12} + \frac{340171}{829440}y^{13} + \frac{22565}{55296}y^{14} \\ & & + \ldots + \text{terms through order } y^{65535} \end{array}$$

and all the coefficients (so far) are nonnegative!

Big Conjecture #4.

For each k, the series $-x_k(y)$ has all nonnegative coefficients.

Combine this with the known analyticity for $0 \le y < 1$, and Vivanti-Pringsheim gives:

Consequence of Big Conjecture #4.

Each root $x_k(y)$ is analytic in the open unit disc.

$$\begin{array}{lll} -x_0(y) & = & 1 + \frac{1}{2}y + \frac{1}{2}y^2 + \frac{11}{24}y^3 + \frac{11}{24}y^4 + \frac{7}{16}y^5 + \frac{7}{16}y^6 \\ & & + \frac{493}{1152}y^7 + \frac{163}{384}y^8 + \frac{323}{768}y^9 + \frac{1603}{3840}y^{10} + \frac{57283}{138240}y^{11} \\ & & + \frac{170921}{414720}y^{12} + \frac{340171}{829440}y^{13} + \frac{22565}{55296}y^{14} \\ & & + \ldots + \text{terms through order } y^{65535} \end{array}$$

and all the coefficients (so far) are nonnegative!

Big Conjecture #4.

For each k, the series $-x_k(y)$ has all nonnegative coefficients.

Combine this with the known analyticity for $0 \le y < 1$, and Vivanti-Pringsheim gives:

Consequence of Big Conjecture #4.

Each root $x_k(y)$ is analytic in the open unit disc.

NEED TO DO: Extended computations for k = 1, 2, ... and for symbolic k.

12 / 23

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$

$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$

$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{1658880}y^{14}$$

$$- \dots - \text{terms through order } y^{65535}$$

and all the coefficients (so far) beyond the constant term are nonpositive!

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$

$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$

$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{1658880}y^{14}$$

$$- \dots - \text{terms through order } y^{65535}$$

and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all nonpositive coefficients after the constant term 1.

[This implies Big Conjecture #4, but is stronger.]

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$

$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$

$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{1658880}y^{14}$$

$$- \dots - \text{ terms through order } y^{65535}$$

and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all nonpositive coefficients after the constant term 1.

• Relative simplicity of the coefficients of $-1/x_0(y)$ compared to those of $-x_0(y) \longrightarrow \text{simpler combinatorial interpretation?}$

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$

$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$

$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{1658880}y^{14}$$

$$- \dots - \text{terms through order } y^{65535}$$

and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all nonpositive coefficients after the constant term 1.

• Note that $x_k(y) \to -\infty$ as $y \uparrow 1$ (this is fairly easy to prove). So $1/x_k(y) \to 0$. Therefore:

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$

$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$

$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{1658880}y^{14}$$

$$- \dots - \text{terms through order } y^{65535}$$

and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all nonpositive coefficients after the constant term 1.

• Note that $x_k(y) \to -\infty$ as $y \uparrow 1$ (this is fairly easy to prove). So $1/x_{k}(v) \rightarrow 0$. Therefore:

Consequence of Big Conjecture #5. For each k, the coefficients in the series $1 + (k+1)v^{-k}/x_k(v)$ are the probabilities for a positive-integer-valued random variable.

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$

$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$

$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{1658880}y^{14}$$

$$- \dots - \text{ terms through order } y^{65535}$$

and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all nonpositive coefficients after the constant term 1.

- Note that $x_k(y) \to -\infty$ as $y \uparrow 1$ (this is fairly easy to prove). So $1/x_k(y) \to 0$. Therefore:
- **Consequence of Big Conjecture #5.** For each k, the coefficients in the series $1 + (k+1)y^{-k}/x_k(y)$ are the probabilities for a positive-integer-valued random variable.

• Define
$$D_n(y) = \frac{\overline{C}_n(y)}{(-1)^{n-1}(n-1)!}$$
 [it has constant term 1] and recall that $-x_0(y) = \lim_{n \to \infty} D_n(y)^{-1/n}$

• Define $D_n(y) = \frac{C_n(y)}{(-1)^{n-1}(n-1)!}$ [it has constant term 1] and recall that $-x_0(y) = \lim_{n \to \infty} D_n(y)^{-1/n}$

Big Conjecture #6. For each n,

(a) the series $D_n(y)^{-1/n}$ has all nonnegative coefficients,

• Define $D_n(y) = \frac{C_n(y)}{(-1)^{n-1}(n-1)!}$ [it has constant term 1] and recall that $-x_0(y) = \lim_{n \to \infty} D_n(y)^{-1/n}$

- (a) the series $D_n(y)^{-1/n}$ has all nonnegative coefficients, and even more strongly,
- (b) the series $D_n(y)^{1/n}$ has all nonpositive coefficients after the constant term 1.

• Define $D_n(y) = \frac{\overline{C}_n(y)}{(-1)^{n-1}(n-1)!}$ [it has constant term 1] and recall that $-x_0(y) = \lim_{n \to \infty} D_n(y)^{-1/n}$

- (a) the series $D_n(y)^{-1/n}$ has all nonnegative coefficients, and even more strongly,
- (b) the series $D_n(y)^{1/n}$ has all nonpositive coefficients after the constant term 1.
 - Since $D_n(y) > 0$ for $0 \le y < 1$, Vivanti–Pringsheim shows that **Big Conjecture** #6a implies **Big Conjecture** #3: For each n, $\overline{C}_n(y)$ has no zeros with |y| < 1.

• Define $D_n(y) = \frac{C_n(y)}{(-1)^{n-1}(n-1)!}$ [it has constant term 1] and recall that $-x_0(y) = \lim_{n \to \infty} D_n(y)^{-1/n}$

- (a) the series $D_n(y)^{-1/n}$ has all nonnegative coefficients,
- and even more strongly,
- (b) the series $D_n(y)^{1/n}$ has all nonpositive coefficients after the constant term 1.
 - Big Conjecture #6b \implies for each n, the coefficients in the series $1 - D_n(y)^{1/n}$ are the probabilities for a positive-integer-valued random variable.

• Define $D_n(y) = \frac{C_n(y)}{(-1)^{n-1}(n-1)!}$ [it has constant term 1] and recall that $-x_0(y) = \lim_{n \to \infty} D_n(y)^{-1/n}$

- (a) the series $D_n(y)^{-1/n}$ has all nonnegative coefficients,
- and even more strongly,
- (b) the series $D_n(y)^{1/n}$ has all nonpositive coefficients after the constant term 1.
 - **Big Conjecture** #6b \implies for each n, the coefficients in the series $1 - D_n(y)^{1/n}$ are the probabilities for a positive-integer-valued random variable.
 - Such a random variable would generalize the one for $1/x_0(y)$ in roughly the same way that the binomial generalizes the Poisson.

• Probability generating function $P_n(y) = 1 - D_n(y)^{1/n}$

- Probability generating function $P_n(y) = 1 D_n(y)^{1/n}$
- Presumably has something to do with random graphs on *n* vertices

- Probability generating function $P_n(y) = 1 D_n(y)^{1/n}$
- Presumably has something to do with random graphs on n vertices
- Maybe some structure built on top of a random graph (some kind of tree? Markov chain?)

- Probability generating function $P_n(y) = 1 D_n(y)^{1/n}$
- Try to understand the first two cases:

$$\begin{array}{lll} P_2(y) & = & 1 - (1 - y)^{1/2} \\ & = & \frac{1}{2}y + \frac{1}{8}y^2 + \frac{1}{16}y^3 + \frac{5}{128}y^4 + \frac{7}{256}y^5 + \frac{21}{1024}y^6 \\ & & & + \frac{33}{2048}y^7 + \frac{429}{32768}y^8 + \frac{715}{65536}y^9 + \frac{2431}{262144}y^{10} + \dots \\ & \sim & \mathsf{Sibuya}(\frac{1}{2}) \, \mathsf{random \, variable} \end{array}$$

$$P_{3}(y) = 1 - \left(1 - \frac{3}{2}y + \frac{1}{2}y^{3}\right)^{1/3}$$

$$= \frac{1}{2}y + \frac{1}{4}y^{2} + \frac{1}{24}y^{3} + \frac{1}{24}y^{4} + \frac{1}{48}y^{5} + \frac{5}{288}y^{6} + \frac{7}{576}y^{7} + \frac{23}{2304}y^{8} + \frac{329}{41472}y^{9} + \frac{553}{82944}y^{10} + \dots$$

- Probability generating function $P_n(y) = 1 D_n(y)^{1/n}$
- Try to understand the first two cases:

$$\begin{array}{lll} P_2(y) & = & 1 - (1 - y)^{1/2} \\ & = & \frac{1}{2}y + \frac{1}{8}y^2 + \frac{1}{16}y^3 + \frac{5}{128}y^4 + \frac{7}{256}y^5 + \frac{21}{1024}y^6 \\ & & & + \frac{33}{2048}y^7 + \frac{429}{32768}y^8 + \frac{715}{65536}y^9 + \frac{2431}{262144}y^{10} + \dots \\ & \sim & \mathsf{Sibuya}(\frac{1}{2}) \, \mathsf{random \, variable} \end{array}$$

$$P_{3}(y) = 1 - \left(1 - \frac{3}{2}y + \frac{1}{2}y^{3}\right)^{1/3}$$

$$= \frac{1}{2}y + \frac{1}{4}y^{2} + \frac{1}{24}y^{3} + \frac{1}{24}y^{4} + \frac{1}{48}y^{5} + \frac{5}{288}y^{6} + \frac{7}{576}y^{7} + \frac{23}{2304}y^{8} + \frac{329}{41472}y^{9} + \frac{553}{82944}y^{10} + \dots$$

• How are these related to random graphs on 2 or 3 vertices??

- Probability generating function $P_n(y) = 1 D_n(y)^{1/n}$
- Try to understand the first two cases:

$$\begin{array}{lll} P_2(y) & = & 1 - (1 - y)^{1/2} \\ & = & \frac{1}{2}y + \frac{1}{8}y^2 + \frac{1}{16}y^3 + \frac{5}{128}y^4 + \frac{7}{256}y^5 + \frac{21}{1024}y^6 \\ & & & + \frac{33}{2048}y^7 + \frac{429}{32768}y^8 + \frac{715}{65536}y^9 + \frac{2431}{262144}y^{10} + \dots \\ & \sim & \mathsf{Sibuya}(\frac{1}{2}) \, \mathsf{random \, variable} \end{array}$$

$$P_{3}(y) = 1 - \left(1 - \frac{3}{2}y + \frac{1}{2}y^{3}\right)^{1/3}$$

$$= \frac{1}{2}y + \frac{1}{4}y^{2} + \frac{1}{24}y^{3} + \frac{1}{24}y^{4} + \frac{1}{48}y^{5} + \frac{5}{288}y^{6} + \frac{7}{676}y^{7} + \frac{23}{2324}y^{8} + \frac{329}{41472}y^{9} + \frac{553}{23244}y^{10} + \dots$$

- How are these related to random graphs on 2 or 3 vertices??
- I have an analytic proof that $P_3(y) \succeq 0$, but it doesn't shed any light on the possible probabilistic interpretation.

- Probability generating function $P_n(y) = 1 D_n(y)^{1/n}$
- Try to understand the first two cases:

$$\begin{array}{lll} P_2(y) & = & 1 - (1 - y)^{1/2} \\ & = & \frac{1}{2}y + \frac{1}{8}y^2 + \frac{1}{16}y^3 + \frac{5}{128}y^4 + \frac{7}{256}y^5 + \frac{21}{1024}y^6 \\ & & & + \frac{33}{2048}y^7 + \frac{429}{32768}y^8 + \frac{715}{65536}y^9 + \frac{2431}{262144}y^{10} + \dots \\ & \sim & \mathsf{Sibuya}(\frac{1}{2}) \, \mathsf{random \, variable} \end{array}$$

$$P_{3}(y) = 1 - \left(1 - \frac{3}{2}y + \frac{1}{2}y^{3}\right)^{1/3}$$

$$= \frac{1}{2}y + \frac{1}{4}y^{2} + \frac{1}{24}y^{3} + \frac{1}{24}y^{4} + \frac{1}{48}y^{5} + \frac{5}{288}y^{6} + \frac{7}{576}y^{7} + \frac{23}{2304}y^{8} + \frac{329}{41472}y^{9} + \frac{553}{82044}y^{10} + \dots$$

- How are these related to random graphs on 2 or 3 vertices??
- I have an analytic proof that $P_3(y) \succeq 0$, but it doesn't shed any light on the possible probabilistic interpretation.
- Jim Fill has a probabilistic interpretation for n = 2,3 in terms of birth-and-death chains, but it doesn't seem to generalize to $n \ge 4$.

The series

$$\frac{x_0(y)}{x_1(y)} = \frac{1}{2}y + \frac{1}{6}y^2 + \frac{5}{72}y^3 + \frac{11}{216}y^4 + \frac{29}{1296}y^5 + \dots$$

has nonnegative coefficients at least up to order y^{136} .

(But its reciprocal does not have any fixed signs.)

The series

$$\frac{x_0(y)}{x_1(y)} = \frac{1}{2}y + \frac{1}{6}y^2 + \frac{5}{72}y^3 + \frac{11}{216}y^4 + \frac{29}{1296}y^5 + \dots$$

has nonnegative coefficients at least up to order y^{136} . (But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series $x_0(y)/x_1(y)$ has nonnegative coefficients.

The series

$$\frac{x_0(y)}{x_1(y)} = \frac{1}{2}y + \frac{1}{6}y^2 + \frac{5}{72}y^3 + \frac{11}{216}y^4 + \frac{29}{1296}y^5 + \dots$$

has nonnegative coefficients at least up to order v^{136} .

(But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series $x_0(y)/x_1(y)$ has nonnegative coefficients.

Consequence of Big Conjecture #7. Since $\lim_{y \uparrow 1} x_0(y)/x_1(y) = 1$, Big Conjecture #7 implies that $|x_0(y)| < |x_1(y)|$ for all $y \in \mathbb{D}$ (special case of Big Conjecture #2 on the separation in modulus of roots).

The series

$$\frac{x_0(y)}{x_1(y)} = \frac{1}{2}y + \frac{1}{6}y^2 + \frac{5}{72}y^3 + \frac{11}{216}y^4 + \frac{29}{1296}y^5 + \dots$$
 has nonnegative coefficients at least up to order y^{136} .

(But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series $x_0(y)/x_1(y)$ has nonnegative coefficients.

Consequence of Big Conjecture #7. Since $\lim_{y \uparrow 1} x_0(y)/x_1(y) = 1$, Big Conjecture #7 implies that $|x_0(y)| < |x_1(y)|$ for all $y \in \mathbb{D}$ (special case of Big Conjecture #2 on the separation in modulus of roots).

Unfortunately, the series

$$\frac{x_1(y)}{x_2(y)} = \frac{2}{3}y + \frac{1}{18}y^2 + \frac{17}{216}y^3 + \frac{23}{810}y^4 + \frac{343}{17280}y^5 + \dots$$

has a negative coefficient at order y^{13} . This doesn't contradict the conjecture that $|x_1(y)/x_2(y)| < 1$ in the unit disc, but it does rule out the simplest method of proof.

Asymptotics of roots as $y \rightarrow 1$

• Write $y = e^{-\gamma}$ with $\operatorname{Re} \gamma > 0$. Want to study $\gamma \to 0$ (non-tangentially in the right half-plane).

- Write $y = e^{-\gamma}$ with $\operatorname{Re} \gamma > 0$. Want to study $\gamma \to 0$ (non-tangentially in the right half-plane).
- I think I will be able to prove that

$$-x_k(e^{-\gamma}) \approx \frac{1}{e}\gamma^{-1} + c_k\gamma^{-1/3} + \dots$$

for suitable constants $c_0 < c_1 < c_2 < \dots$

But I have not yet worked out all the details.

- Write $y = e^{-\gamma}$ with $\operatorname{Re} \gamma > 0$. Want to study $\gamma \to 0$ (non-tangentially in the right half-plane).
- I think I will be able to prove that

$$-x_k(e^{-\gamma}) \approx \frac{1}{e}\gamma^{-1} + c_k\gamma^{-1/3} + \dots$$

for suitable constants $c_0 < c_1 < c_2 < \dots$

But I have not yet worked out all the details.

Overview of method:

- Write $y = e^{-\gamma}$ with $\operatorname{Re} \gamma > 0$. Want to study $\gamma \to 0$ (non-tangentially in the right half-plane).
- I think I will be able to prove that

$$-x_k(e^{-\gamma}) \approx \frac{1}{e}\gamma^{-1} + c_k\gamma^{-1/3} + \dots$$

for suitable constants $c_0 < c_1 < c_2 < \dots$ But I have not yet worked out all the details.

Overview of method:

1. Develop an asymptotic expansion for $F(x, e^{-\gamma})$ when $\gamma \to 0$ and $x \propto \gamma^{-1}$, because this is the regime where the zeros will be found.

- Write $v = e^{-\gamma}$ with $\operatorname{Re} \gamma > 0$. Want to study $\gamma \to 0$ (non-tangentially in the right half-plane).
- I think I will be able to prove that

$$-x_k(e^{-\gamma}) \approx \frac{1}{e}\gamma^{-1} + c_k\gamma^{-1/3} + \dots$$

for suitable constants $c_0 < c_1 < c_2 < \dots$ But I have not yet worked out all the details.

Overview of method:

- 1. Develop an asymptotic expansion for $F(x, e^{-\gamma})$ when $\gamma \to 0$ and $x \propto \gamma^{-1}$, because this is the regime where the zeros will be found.
- 2. Use this expansion for $F(x, e^{-\gamma})$ to deduce an expansion for $x_k(e^{-\gamma})$.

- Write $y = e^{-\gamma}$ with $\operatorname{Re} \gamma > 0$. Want to study $\gamma \to 0$ (non-tangentially in the right half-plane).
- I think I will be able to prove that

$$-x_k(e^{-\gamma}) \approx \frac{1}{e}\gamma^{-1} + c_k\gamma^{-1/3} + \dots$$

for suitable constants $c_0 < c_1 < c_2 < \dots$ But I have not yet worked out all the details.

Overview of method:

- 1. Develop an asymptotic expansion for $F(x, e^{-\gamma})$ when $\gamma \to 0$ and $x \propto \gamma^{-1}$, because this is the regime where the zeros will be found.
- 2. Use this expansion for $F(x, e^{-\gamma})$ to deduce an expansion for $x_k(e^{-\gamma})$.

Anyone knowledgeable about Airy asymptotics who wants to collaborate?

• Consider a formal power series $f(x,y) = \sum \alpha_n x^n y^{n(n-1)/2}$ normalized to $\alpha_0 = \alpha_1 = 1$.

- Consider a formal power series $f(x,y) = \sum_{n=1}^{\infty} \alpha_n x^n y^{n(n-1)/2}$ normalized to $\alpha_0 = \alpha_1 = 1$.
- Example: Partial theta function $\Theta_0(x,y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}$ beloved of q-series practitioners (going back at least to Ramanujan).

- Consider a formal power series $f(x,y) = \sum_{n} \alpha_n x^n y^{n(n-1)/2}$ normalized to $\alpha_0 = \alpha_1 = 1$.
- Example: Partial theta function $\Theta_0(x,y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}$ beloved of q-series practitioners (going back at least to Ramanujan).
- More generally: Rogers-Ramanujan entire function

$$\widetilde{R}(x, y, q) = \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(1+q)(1+q+q^2)\cdots(1+q+\ldots+q^{n-1})}$$

which interpolates between Θ_0 (at q=0) and F (at q=1).

- Consider a formal power series $f(x,y) = \sum_{n=1}^{\infty} \alpha_n x^n y^{n(n-1)/2}$ normalized to $\alpha_0 = \alpha_1 = 1$.
- Example: Partial theta function $\Theta_0(x,y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}$ beloved of q-series practitioners (going back at least to Ramanujan).
- More generally: Rogers-Ramanujan entire function

$$\widetilde{R}(x, y, q) = \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(1+q)(1+q+q^2)\cdots(1+q+\ldots+q^{n-1})}$$

which interpolates between Θ_0 (at q=0) and F (at q=1).

 "Deformed binomial" and "deformed hypergeometric" series (see below).

• **Example**: For Θ_0 we have

$$-x_0(y) = 1+y+2y^2+4y^3+9y^4+21y^5+52y^6+133y^7+351y^8+\dots$$

• **Example**: For Θ_0 we have

$$-x_0(y) = 1+y+2y^2+4y^3+9y^4+21y^5+52y^6+133y^7+351y^8+\dots$$

• I have proven that the coefficients are positive, using q-series identities. [A.S., Adv. Math., 2012]

• **Example**: For Θ_0 we have

$$-x_0(y) = 1+y+2y^2+4y^3+9y^4+21y^5+52y^6+133y^7+351y^8+\dots$$

- I have proven that the coefficients are positive, using q-series identities. [A.S., Adv. Math., 2012]
- Indeed, $-1/x_0(y)$ and $1/x_0(y)^2$ have nonpositive coefficients after the constant term 1.

• **Example**: For Θ_0 we have

$$-x_0(y) = 1+y+2y^2+4y^3+9y^4+21y^5+52y^6+133y^7+351y^8+\dots$$

- I have proven that the coefficients are positive, using q-series identities. [A.S., Adv. Math., 2012]
- Indeed, $-1/x_0(y)$ and $1/x_0(y)^2$ have nonpositive coefficients after the constant term 1.
- Alas, the method does not seem to generalize.

• More generally, for $\widetilde{R}(x, y, q)$ it can be proven that

$$-x_0(y,q) = 1 + \sum_{n=1}^{\infty} \frac{P_n(q)}{Q_n(q)} y^n$$

where
$$Q_n(q) = \prod_{k=2}^{\infty} (1+q+\ldots+q^{k-1})^{\lfloor n/\binom{k}{2} \rfloor}$$

and $P_n(q)$ is a self-inversive polynomial with integer coefficients.

• More generally, for $\widetilde{R}(x, y, q)$ it can be proven that

$$-x_0(y,q) = 1 + \sum_{n=1}^{\infty} \frac{P_n(q)}{Q_n(q)} y^n$$

where
$$Q_n(q) = \prod_{k=2}^{\infty} (1+q+\ldots+q^{k-1})^{\lfloor n/\binom{k}{2} \rfloor}$$

and $P_n(q)$ is a self-inversive polynomial with integer coefficients.

• Empirically $P_n(q)$ has two interesting positivity properties (verified for n < 349):

• More generally, for $\widetilde{R}(x, y, q)$ it can be proven that

$$-x_0(y,q) = 1 + \sum_{n=1}^{\infty} \frac{P_n(q)}{Q_n(q)} y^n$$

where
$$Q_n(q) = \prod_{k=2}^{\infty} (1+q+\ldots+q^{k-1})^{\lfloor n/\binom{k}{2} \rfloor}$$

and $P_n(q)$ is a self-inversive polynomial with integer coefficients.

- Empirically $P_n(q)$ has two interesting positivity properties (verified for n < 349):
 - (a) $P_n(q)$ has all nonnegative coefficients.

• More generally, for $\widetilde{R}(x, y, q)$ it can be proven that

$$-x_0(y,q) = 1 + \sum_{n=1}^{\infty} \frac{P_n(q)}{Q_n(q)} y^n$$

where
$$Q_n(q) = \prod_{k=2}^{\infty} (1+q+\ldots+q^{k-1})^{\lfloor n/\binom{k}{2} \rfloor}$$

and $P_n(q)$ is a self-inversive polynomial with integer coefficients.

- Empirically $P_n(q)$ has two interesting positivity properties (verified for n < 349):
 - (a) $P_n(q)$ has all nonnegative coefficients.
 - (b) $P_n(q) > 0$ for q > -1.

• More generally, for $\widetilde{R}(x, y, q)$ it can be proven that

$$-x_0(y,q) = 1 + \sum_{n=1}^{\infty} \frac{P_n(q)}{Q_n(q)} y^n$$

where
$$Q_n(q) = \prod_{k=2}^{\infty} (1+q+\ldots+q^{k-1})^{\lfloor n/\binom{k}{2} \rfloor}$$

and $P_n(q)$ is a self-inversive polynomial with integer coefficients.

- Empirically $P_n(q)$ has two interesting positivity properties (verified for n < 349):
 - (a) $P_n(q)$ has all nonnegative coefficients.
 - (b) $P_n(q) > 0$ for q > -1.

Can any of this be proven???

An even simpler family that interpolates between Θ_0 and F:

An even simpler family that interpolates between Θ_0 and F:

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

An even simpler family that interpolates between Θ_0 and F:

• Start from the Taylor series for the binomial $f(x) = (1 - \mu x)^{-1/\mu}$ and introduce factors $y^{n(n-1)/2}$ as usual:

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

• We call $F_{\mu}(x,y)$ the deformed binomial function.

An even simpler family that interpolates between Θ_0 and F:

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

- We call $F_{\mu}(x,y)$ the deformed binomial function.
- For $\mu = 0$ it reduces to the deformed exponential function.

An even simpler family that interpolates between Θ_0 and F:

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

- We call $F_{\mu}(x,y)$ the deformed binomial function.
- For $\mu = 0$ it reduces to the deformed exponential function.
- For $\mu = 1$ it reduces to the partial theta function.

An even simpler family that interpolates between Θ_0 and F:

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

- We call $F_{\mu}(x,y)$ the deformed binomial function.
- For $\mu = 0$ it reduces to the deformed exponential function.
- For $\mu = 1$ it reduces to the partial theta function.
- For $\mu = -1/N$ (N = 1, 2, 3, ...) it is a polynomial of degree N that is the "y-deformation" of the binomial $(1 + x/N)^N$.

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

Can prove that

$$-x_0(y; \mu) = 1 + \sum_{n=1}^{\infty} \frac{P_n(\mu)}{d_n} y^n$$

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

Can prove that

$$-x_0(y; \mu) = 1 + \sum_{n=1}^{\infty} \frac{P_n(\mu)}{d_n} y^n$$

where $P_n(\mu)$ is a polynomial of degree n with integer coefficients and d_n are explicit integers.

• Empirically $P_n(\mu)$ has two interesting positivity properties:

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

Can prove that

$$-x_0(y; \mu) = 1 + \sum_{n=1}^{\infty} \frac{P_n(\mu)}{d_n} y^n$$

- Empirically $P_n(\mu)$ has two interesting positivity properties:
 - (a) $P_n(\mu)$ has all strictly positive coefficients.

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

Can prove that

$$-x_0(y; \mu) = 1 + \sum_{n=1}^{\infty} \frac{P_n(\mu)}{d_n} y^n$$

- Empirically $P_n(\mu)$ has two interesting positivity properties:
 - (a) $P_n(\mu)$ has all strictly positive coefficients.
 - (b) $P_n(\mu) > 0$ for $\mu > -1$.

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

Can prove that

$$-x_0(y; \mu) = 1 + \sum_{n=1}^{\infty} \frac{P_n(\mu)}{d_n} y^n$$

- Empirically $P_n(\mu)$ has two interesting positivity properties:
 - (a) $P_n(\mu)$ has all strictly positive coefficients.
 - (b) $P_n(\mu) > 0$ for $\mu > -1$.
- Can any of this be proven for $\mu \neq 1$?

• Exponential $({}_{0}F_{0})$ and binomial $({}_{1}F_{0})$ are simplest cases of the hypergeometric series $_{p}F_{q}$.

- Exponential $({}_{0}F_{0})$ and binomial $({}_{1}F_{0})$ are simplest cases of the hypergeometric series $_{o}F_{a}$.
- Can apply "y-deformation" process to ${}_{p}F_{q}$:

$${}_{\rho}F_{q}^{*}\left(\begin{array}{c}\mu_{1},\ldots,\mu_{p}\\\nu_{1},\ldots,\nu_{q}\end{array}\middle| x,y\right) = \sum_{n=0}^{\infty} \frac{\prod\limits_{i=1}^{p}\prod\limits_{j=0}^{n-1}(1+j\mu_{i})}{\prod\limits_{i=1}^{q}\prod\limits_{j=0}^{n-1}(1+j\nu_{i})} \frac{x^{n}}{n!} y^{n(n-1)/2}$$

- Exponential $({}_{0}F_{0})$ and binomial $({}_{1}F_{0})$ are simplest cases of the hypergeometric series $_{\sigma}F_{a}$.
- Can apply "y-deformation" process to \mathcal{F}_a :

$$\rho F_q^* \left(\begin{array}{c} \mu_1, \dots, \mu_p \\ \nu_1, \dots, \nu_q \end{array} \middle| x, y \right) = \sum_{n=0}^{\infty} \frac{\prod\limits_{i=1}^{p} \prod\limits_{j=0}^{n-1} (1+j\mu_i)}{\prod\limits_{i=1}^{q} \prod\limits_{j=0}^{n-1} (1+j\nu_i)} \frac{x^n}{n!} y^{n(n-1)/2}$$

• Note that setting $\mu_p = 0$ reduces ${}_{p}F_{q}^{*}$ to ${}_{p-1}F_{q}^{*}$ (and likewise for ν_q).

The deformed hypergeometric series

- Exponential $({}_{0}F_{0})$ and binomial $({}_{1}F_{0})$ are simplest cases of the hypergeometric series ${}_{p}F_{q}$.
- Can apply "y-deformation" process to ${}_{p}F_{q}$:

$${}_{p}F_{q}^{*}\left(\begin{array}{c}\mu_{1}, \ldots, \mu_{p} \\ \nu_{1}, \ldots, \nu_{q}\end{array} \middle| x, y\right) = \sum_{n=0}^{\infty} \frac{\prod\limits_{i=1}^{p} \prod\limits_{j=0}^{n-1} (1+j\mu_{i})}{\prod\limits_{i=1}^{q} \prod\limits_{j=0}^{n-1} (1+j\nu_{i})} \frac{x^{n}}{n!} y^{n(n-1)/2}$$

- Note that setting $\mu_p=0$ reduces ${}_p\!F_q^*$ to ${}_{p-1}\!F_q^*$ (and likewise for ν_q).
- Empirically the two positivity properties for the deformed binomial appear to extend to $_pF_0^*$ (in all the variables μ_1, \ldots, μ_p).

21 / 23

The deformed hypergeometric series

- Exponential $({}_{0}F_{0})$ and binomial $({}_{1}F_{0})$ are simplest cases of the hypergeometric series $_{\sigma}F_{a}$.
- Can apply "y-deformation" process to \mathcal{F}_a :

$$\rho F_q^* \left(\begin{array}{c} \mu_1, \dots, \mu_p \\ \nu_1, \dots, \nu_q \end{array} \middle| x, y \right) = \sum_{n=0}^{\infty} \frac{\prod\limits_{i=1}^{p} \prod\limits_{j=0}^{n-1} (1+j\mu_i)}{\prod\limits_{i=1}^{q} \prod\limits_{j=0}^{n-1} (1+j\nu_i)} \frac{x^n}{n!} y^{n(n-1)/2}$$

- Note that setting $\mu_p = 0$ reduces ${}_{p}F_{q}^{*}$ to ${}_{p-1}F_{q}^{*}$ (and likewise for ν_q).
- Empirically the two positivity properties for the deformed binomial appear to extend to $_{p}F_{0}^{*}$ (in all the variables μ_{1},\ldots,μ_{p}).
- But the cases ${}_{\sigma}F_{q}^{*}$ with $q \geq 1$ are different, and I do not yet know the complete pattern of behavior.

I conjecture that there are *four different* things going on here:

• Positivity properties for the leading root $\xi_0(y)$:

- Positivity properties for the leading root $\xi_0(y)$:
 - Positivity of $\xi_0(y)$ or $1 1/\xi_0(y)$ for a fairly large class of series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

I conjecture that there are *four different* things going on here:

- Positivity properties for the leading root $\xi_0(y)$:
 - Positivity of $\xi_0(y)$ or $1 1/\xi_0(y)$ for a fairly large class of series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

• Appears to include deformed hypergeometric \mathcal{F}_0^* , Rogers-Ramanujan $\widetilde{R}(x, y, q)$, probably others

- Positivity properties for the leading root $\xi_0(y)$:
 - Positivity of $\xi_0(y)$ or $1 1/\xi_0(y)$ for a fairly large class of series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

- Appears to include deformed hypergeometric \mathcal{F}_0^* , Rogers-Ramanujan $\widetilde{R}(x, y, q)$, probably others
- Find sufficient conditions on $\{\alpha_n\}_{n=0}^{\infty}$??

- Positivity properties for the leading root $\xi_0(y)$:
 - Positivity of $\xi_0(y)$ or $1 1/\xi_0(y)$ for a fairly large class of series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

- Appears to include deformed hypergeometric \mathcal{F}_0^* , Rogers-Ramanujan $\widetilde{R}(x, y, q)$, probably others
- Find sufficient conditions on $\{\alpha_n\}_{n=0}^{\infty}$??
- Positivity properties for the higher roots $\xi_k(y)$:

- Positivity properties for the leading root $\xi_0(y)$:
 - Positivity of $\xi_0(y)$ or $1 1/\xi_0(y)$ for a fairly large class of series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

- Appears to include deformed hypergeometric \mathcal{F}_0^* , Rogers-Ramanujan $\widetilde{R}(x, y, q)$, probably others
- Find sufficient conditions on $\{\alpha_n\}_{n=0}^{\infty}$??
- Positivity properties for the higher roots $\xi_k(y)$:
 - Some positivity for partial theta function and perhaps others (needs further investigation)

- Positivity properties for the leading root $\xi_0(y)$:
 - Positivity of $\xi_0(y)$ or $1 1/\xi_0(y)$ for a fairly large class of series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

- Appears to include deformed hypergeometric \mathcal{F}_0^* , Rogers-Ramanujan $\widetilde{R}(x, y, q)$, probably others
- Find sufficient conditions on $\{\alpha_n\}_{n=0}^{\infty}$??
- Positivity properties for the higher roots $\xi_k(y)$:
 - Some positivity for partial theta function and perhaps others (needs further investigation)
 - Positivity of all $\xi_k(y)$ only for deformed exponential??

I conjecture that there are *four different* things going on here:

• Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"
 - Class appears to include at least deformed exponential

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"
 - Class appears to include at least deformed exponential
 - Needs much further investigation

I conjecture that there are *four different* things going on here:

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"
 - Class appears to include at least deformed exponential
 - Needs much further investigation

These three properties apply to formal power series, not just entire functions.

I conjecture that there are *four different* things going on here:

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"
 - Class appears to include at least deformed exponential
 - Needs much further investigation

These three properties apply to formal power series, not just entire functions.

• Analyticity of $\xi_0(y)$ or all $\xi_k(y)$ in unit disc:

I conjecture that there are *four different* things going on here:

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"
 - Class appears to include at least deformed exponential
 - Needs much further investigation

These three properties apply to formal power series, not just entire functions.

- Analyticity of $\xi_0(y)$ or all $\xi_k(y)$ in unit disc:
 - Probably holds for deformed exponential and some subclass of LP+

I conjecture that there are *four different* things going on here:

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"
 - Class appears to include at least deformed exponential
 - Needs much further investigation

These three properties apply to formal power series, not just entire functions.

- Analyticity of $\xi_0(y)$ or all $\xi_k(y)$ in unit disc:
 - Probably holds for deformed exponential and some subclass of LP+
 - Roots should be "not too unevenly spaced"

I conjecture that there are *four different* things going on here:

- Positivity properties for ratios $\xi_k(y)/\xi_{k+1}(y)$:
 - Holds for some unknown class of series f(x, y)
 - Even for polynomials, class is unknown (cf. Calogero–Moser): roots should be "not too unevenly spaced"
 - Class appears to include at least deformed exponential
 - Needs much further investigation

These three properties apply to formal power series, not just entire functions.

- Analyticity of $\xi_0(y)$ or all $\xi_k(y)$ in unit disc:
 - Probably holds for deformed exponential and some subclass of LP+
 - Roots should be "not too unevenly spaced"

Can any of this be proven???

