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The deformed exponential function

Deformed exponential function F (x , y) =
∞∑
n=0

xn

n!
yn(n−1)/2

Defined for complex x and y satisfying |y | ≤ 1

Entire in x for each y ∈ D
Analytic in C× D, continuous in C× D
Valiron (1938): “from a certain viewpoint the simplest entire function
after the exponential function”

Statistical mechanics: Partition function of one-site lattice gas

Combinatorics: Generating function for Tutte polynomials on Kn

(also acyclic digraphs, inversions of trees, . . . )

Functional-differential equation: F ′(x) = F (yx) where ′ = ∂/∂x

Complex analysis: Whittaker and Goncharov constants
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Application to enumeration of connected graphs

Let Cn(v) = generating polynomial for connected graphs on
n labeled vertices, weight v per edge

No explicit formula is known

But we can find the exponential generating function.

Let An(v) = generating polynomial for all graphs . . .

Obviously An(v) = (1 + v)n(n−1)/2

Exponential formula:
∞∑
n=1

Cn(v)
xn

n!
= log

( ∞∑
n=0

An(v)
xn

n!

)
= log F (x , 1 + v)

Usually considered as formal power series in x

But series are convergent if |1 + v | ≤ 1
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Elementary properties of deformed exponential function

y = 0: F (x , 0) = 1 + x

0 < |y | < 1: Nonpolynomial entire function of order 0:

F (x , y) =
∞∏
k=0

(
1 − x

xk(y)

)
with

∑
|xk(y)|−α < ∞ for all α > 0

y = 1: F (x , 1) = ex

|y | = 1 with y ̸= 1: Entire function of order 1 and type 1:

F (x , y) = ex
∞∏
k=0

(
1 − x

xk(y)

)
ex/xk (y) with

∑
|xk(y)|−α < ∞ for all α > 1

[Ålander (1914) for y a root of unity;

Valiron (1938) and Eremenko–Ostrovskii (2007) for y not a root of unity]

|y | > 1: Series F ( · , y) has radius of convergence 0
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Consequences for Cn(v)

Make change of variables y = 1 + v : Cn(y) = Cn(y − 1)

For |y | < 1 we have
∞∑
n=1

Cn(y)
xn

n!
= log F (x , y) =

∑
k

log
(
1 − x

xk(y)

)
and hence

Cn(y) = − (n − 1)!
∑
k

xk(y)
−n for all n ≥ 1

This is a convergent expansion for Cn(y)

In particular, gives large-n asymptotic behavior

Cn(y) = − (n − 1)! x0(y)
−n

[
1 + O(e−ϵn)

]
whenever F ( · , y) has a unique root x0(y) of minimum modulus
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In particular, gives large-n asymptotic behavior

Cn(y) = − (n − 1)! x0(y)
−n

[
1 + O(e−ϵn)

]
whenever F ( · , y) has a unique root x0(y) of minimum modulus

Question: What can we say about the roots xk(y)?
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Small-y expansion of roots xk(y)

For small |y |, we have F (x , y) = 1 + x + O(y), so expect a
convergent expansion

x0(y) = −1 −
∞∑
n=1

any
n

(easy proof using Rouché: valid for |y | ∼< 0.441755)

More generally, for each integer k ≥ 0, write x = ξy−k and study

Fk(ξ, y) = yk(k+1)/2F (ξy−k , y) =
∞∑
n=0

ξn

n!
y (n−k)(n−k−1)/2

Sum dominated by terms n = k and n = k + 1: gives root

xk(y) = −(k + 1) y−k

[
1 +

∞∑
n=1

a
(k)
n yn

]
Rouché argument valid for |y | ∼< 0.207875 uniformly in k:
all roots are simple and given by convergent expansion xk(y)

Can also use theta function in Rouché (Eremenko)
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Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 6 / 23



Small-y expansion of roots xk(y)

For small |y |, we have F (x , y) = 1 + x + O(y), so expect a
convergent expansion

x0(y) = −1 −
∞∑
n=1

any
n
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(easy proof using Rouché: valid for |y | ∼< 0.441755)

More generally, for each integer k ≥ 0, write x = ξy−k and study

Fk(ξ, y) = yk(k+1)/2F (ξy−k , y) =
∞∑
n=0

ξn

n!
y (n−k)(n−k−1)/2

Sum dominated by terms n = k and n = k + 1: gives root

xk(y) = −(k + 1) y−k

[
1 +

∞∑
n=1

a
(k)
n yn

]
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Might these series converge for all |y | < 1?

Collision of roots (→ branch point)

Root escaping to infinity

Proof is based on comparison with a theta function
(whose roots are known by virtue of Jacobi’s product formula)

Conjecture that roots cannot escape to infinity even in the closed
unit disc except at y = 1
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Might these series converge for all |y | < 1?

Two ways that xk(y) could fail to be analytic for |y | < 1:

Collision of roots (→ branch point)

Root escaping to infinity

Theorem (Eremenko 2009, unpublished)

No root can escape to infinity for y in the open unit disc D.

Proof is based on comparison with a theta function
(whose roots are known by virtue of Jacobi’s product formula)

Conjecture that roots cannot escape to infinity even in the closed
unit disc except at y = 1
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for all y ∈ K \ {0} we have:
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2
), and

(b) In |x | ≥ k0|y |−(k0− 1
2
), the function F ( · , y) has a simple zero within
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Two conjectures
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Two conjectures

Big Conjecture #1. All roots of F ( · , y) are simple for |y | < 1.
[and also for |y | = 1, I suspect] [that is, there are no collisions]
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Consequence of Big Conjecture #1.

Each root xk(y) is analytic in |y | < 1.
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[and also for |y | = 1, I suspect] [that is, there are no collisions]

Consequence of Big Conjecture #1.

Each root xk(y) is analytic in |y | < 1.

But I conjecture more . . .

Big Conjecture #2. The roots of F ( · , y) are non-crossing in modulus
for |y | < 1:

|x0(y)| < |x1(y)| < |x2(y)| < . . .

[and also for |y | = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually separated
in modulus by a factor at least |y |, i.e.

|xk(y)| < |y | |xk+1(y)| for all k ≥ 0

Proof. Apply the Schwarz lemma to xk(y)/xk+1(y).
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Consequences for the zeros of C n(y)

Recall that Cn(y) = − (n − 1)!
∑
k

xk(y)
−n

Use a variant of the Beraha–Kahane–Weiss theorem
[A.D.S., arXiv:cond-mat/0012369, Theorem 3.2]

=⇒ the limit points of zeros of Cn are the values y for which
the zero of minimum modulus of F ( · , y) is nonunique.

=⇒ If F ( · , y) has a unique zero of minimum modulus for all y ∈ D
(a weakened form of Big Conjecture #2), then the zeros of Cn(y)
do not accumulate anywhere in the open unit disc.
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do not accumulate anywhere in the open unit disc.

But I actually conjecture more (based on computations up to n ≈ 80):
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Consequences for the zeros of C n(y)

Recall that Cn(y) = − (n − 1)!
∑
k

xk(y)
−n

Use a variant of the Beraha–Kahane–Weiss theorem
[A.D.S., arXiv:cond-mat/0012369, Theorem 3.2]

=⇒ the limit points of zeros of Cn are the values y for which
the zero of minimum modulus of F ( · , y) is nonunique.

=⇒ If F ( · , y) has a unique zero of minimum modulus for all y ∈ D
(a weakened form of Big Conjecture #2), then the zeros of Cn(y)
do not accumulate anywhere in the open unit disc.

But I actually conjecture more (based on computations up to n ≈ 80):

Big Conjecture #3. For each n, Cn(y) has no zeros with |y | < 1.

[and, I suspect, no zeros with |y | = 1 except the point y = 1]
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What is the evidence for these conjectures?

Evidence #1: Behavior at real y .

Evidence #2: From numerical computation of the series xk(y) . . .
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Four methods for computing the series xk(y)

1. Insert xk(y) = −(k + 1)y−k

[
1 +

∞∑
n=1

a
(k)
n yn

]
and solve term-by-term.

2. Use “explicit implicit function theorem” (generalization of
Lagrange inversion formula) given in A.D.S., arXiv:0902.0069.

3. Use Cn(y) = − (n − 1)!
∑
k

xk(y)
−n together with recurrence

Cn(y) = yn(n−1)/2 −
n−1∑
j=1

(
n − 1

j − 1

)
C j(y) y

(n−j)(n−j−1)/2

−→ I went to n ≈ 900 for k = 0 (can go less far as k increases)

4. Use Dandelin–Lobachevskii–Graeffe iteration (repeated squaring)

−→ I went to n = 65535 for k = 0
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Results of numerical computations
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Results of numerical computations

−x0(y) = 1 + 1
2y + 1

2y
2 + 11

24y
3 + 11

24y
4 + 7

16y
5 + 7

16y
6

+ 493
1152y

7 + 163
384y

8 + 323
768y

9 + 1603
3840y

10 + 57283
138240y

11

+ 170921
414720y

12 + 340171
829440y

13 + 22565
55296y

14

+ . . . + terms through order y65535

and all the coefficients (so far) are nonnegative!
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Big Conjecture #4.
For each k , the series −xk(y) has all nonnegative coefficients.
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Big Conjecture #4.
For each k , the series −xk(y) has all nonnegative coefficients.

Combine this with the known analyticity for 0 ≤ y < 1,
and Vivanti–Pringsheim gives:
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and Vivanti–Pringsheim gives:

Consequence of Big Conjecture #4.
Each root xk(y) is analytic in the open unit disc.
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and all the coefficients (so far) are nonnegative!

Big Conjecture #4.
For each k , the series −xk(y) has all nonnegative coefficients.

Combine this with the known analyticity for 0 ≤ y < 1,
and Vivanti–Pringsheim gives:

Consequence of Big Conjecture #4.
Each root xk(y) is analytic in the open unit disc.

NEED TO DO: Extended computations for k = 1, 2, . . . and for symbolic k.
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But more is true . . .

Relative simplicity of the coefficients of −1/x0(y) compared to those
of −x0(y) −→ simpler combinatorial interpretation?

Note that xk(y) → −∞ as y ↑ 1 (this is fairly easy to prove).
So 1/xk(y) → 0. Therefore:
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But more is true . . .

− 1

x0(y)
= 1 − 1

2y − 1
4y

2 − 1
12y

3 − 1
16y

4 − 1
48y

5 − 7
288y

6

− 1
96y

7 − 7
768y

8 − 49
6912y

9 − 113
23040y

10 − 17
4608y

11

− 293
92160y

12 − 737
276480y

13 − 3107
1658880y

14

− . . . − terms through order y65535

and all the coefficients (so far) beyond the constant term are nonpositive!

Relative simplicity of the coefficients of −1/x0(y) compared to those
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and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k , the series −(k + 1)y−k/xk(y) has all
nonpositive coefficients after the constant term 1.

Relative simplicity of the coefficients of −1/x0(y) compared to those
of −x0(y) −→ simpler combinatorial interpretation?

Note that xk(y) → −∞ as y ↑ 1 (this is fairly easy to prove).
So 1/xk(y) → 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coefficients
in the series 1 + (k + 1)y−k/xk(y) are the probabilities for a
positive-integer-valued random variable.
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and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k , the series −(k + 1)y−k/xk(y) has all
nonpositive coefficients after the constant term 1.

Relative simplicity of the coefficients of −1/x0(y) compared to those
of −x0(y) −→ simpler combinatorial interpretation?

Note that xk(y) → −∞ as y ↑ 1 (this is fairly easy to prove).
So 1/xk(y) → 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coefficients
in the series 1 + (k + 1)y−k/xk(y) are the probabilities for a
positive-integer-valued random variable.

What might such a random variable be???
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But I conjecture that even more is true . . .

Define Dn(y) =
Cn(y)

(−1)n−1(n − 1)!
[it has constant term 1]

and recall that −x0(y) = lim
n→∞

Dn(y)
−1/n

Since Dn(y) > 0 for 0 ≤ y < 1, Vivanti–Pringsheim shows that
Big Conjecture #6a implies Big Conjecture #3:

For each n, Cn(y) has no zeros with |y | < 1.

Big Conjecture #6b =⇒ for each n, the coefficients in the series
1− Dn(y)

1/n are the probabilities for a positive-integer-valued
random variable.

Such a random variable would generalize the one for 1/x0(y)
in roughly the same way that the binomial generalizes the Poisson.
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What might such a random variable be?

Probability generating function Pn(y) = 1− Dn(y)
1/n

Presumably has something to do with random graphs on n vertices

Maybe some structure built on top of a random graph
(some kind of tree? Markov chain?)

Try to understand the first two cases:

P2(y) = 1− (1− y)1/2

= 1
2y + 1

8y
2 + 1

16y
3 + 5

128y
4 + 7

256y
5 + 21

1024y
6

+ 33
2048y

7 + 429
32768y

8 + 715
65536y

9 + 2431
262144y

10 + . . .

∼ Sibuya(12) random variable

P3(y) = 1− (1− 3
2y + 1

2y
3)1/3

= 1
2y + 1

4y
2 + 1

24y
3 + 1

24y
4 + 1

48y
5 + 5

288y
6

+ 7
576y

7 + 23
2304y

8 + 329
41472y

9 + 553
82944y

10 + . . .

How are these related to random graphs on 2 or 3 vertices??
I have an analytic proof that P3(y) ⪰ 0, but it doesn’t shed any light
on the possible probabilistic interpretation.
Jim Fill has a probabilistic interpretation for n = 2, 3 in terms of
birth-and-death chains, but it doesn’t seem to generalize to n ≥ 4.
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Ratios of roots xk(y)/xk+1(y)

The series

x0(y)

x1(y)
= 1

2y + 1
6y

2 + 5
72y

3 + 11
216y

4 + 29
1296y

5 + . . .

has nonnegative coefficients at least up to order y136.
(But its reciprocal does not have any fixed signs.)

Unfortunately, the series

x1(y)

x2(y)
= 2

3y + 1
18y

2 + 17
216y

3 + 23
810y

4 + 343
17280y

5 + . . .

has a negative coefficient at order y13. This doesn’t contradict the
conjecture that |x1(y)/x2(y)| < 1 in the unit disc, but it does rule out
the simplest method of proof.
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Asymptotics of roots as y → 1

Write y = e−γ with Re γ > 0.
Want to study γ → 0 (non-tangentially in the right half-plane).

I think I will be able to prove that

−xk(e
−γ) ≈ 1

e
γ−1 + ckγ

−1/3 + . . .

for suitable constants c0 < c1 < c2 < . . . .
But I have not yet worked out all the details.

1. Develop an asymptotic expansion for F (x , e−γ) when γ → 0
and x ∝ γ−1, because this is the regime where the zeros will be found.

2. Use this expansion for F (x , e−γ) to deduce an expansion for xk(e
−γ).
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Anyone knowledgeable about Airy asymptotics who wants to collaborate?
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A more general approach to the leading root x0(y)

Consider a formal power series f (x , y) =
∞∑
n=0

αn x
n yn(n−1)/2

normalized to α0 = α1 = 1.

Example: Partial theta function Θ0(x , y) =
∞∑
n=0

xn yn(n−1)/2

beloved of q-series practitioners (going back at least to Ramanujan).

More generally: Rogers–Ramanujan entire function

R̃(x , y , q) =
∞∑
n=0

xn yn(n−1)/2

(1 + q)(1 + q + q2) · · · (1 + q + . . .+ qn−1)

which interpolates between Θ0 (at q = 0) and F (at q = 1).

“Deformed binomial” and “deformed hypergeometric” series
(see below).
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A more general approach, continued . . .

Example: For Θ0 we have

−x0(y) = 1+y+2y2+4y3+9y4+21y5+52y6+133y7+351y8+. . .

I have proven that the coefficients are positive, using q-series identities.
[A.S., Adv. Math., 2012]

Indeed, −1/x0(y) and 1/x0(y)
2 have nonpositive coefficients after the

constant term 1.

Alas, the method does not seem to generalize.

More generally, for R̃(x , y , q) it can be proven that

−x0(y , q) = 1 +
∞∑
n=1

Pn(q)

Qn(q)
yn

where Qn(q) =
∞∏
k=2

(1 + q + . . .+ qk−1)⌊n/(
k
2)⌋

and Pn(q) is a self-inversive polynomial with integer coefficients.

Empirically Pn(q) has two interesting positivity properties
(verified for n ≤ 349):

(a) Pn(q) has all nonnegative coefficients.

(b) Pn(q) > 0 for q > −1.

Can any of this be proven???
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[A.S., Adv. Math., 2012]

Indeed, −1/x0(y) and 1/x0(y)
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constant term 1.

Alas, the method does not seem to generalize.
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The deformed binomial series

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

An even simpler family that interpolates between Θ0 and F :

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

An even simpler family that interpolates between Θ0 and F :

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

An even simpler family that interpolates between Θ0 and F :

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

An even simpler family that interpolates between Θ0 and F :

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

An even simpler family that interpolates between Θ0 and F :

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

An even simpler family that interpolates between Θ0 and F :

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed binomial series

Start from the Taylor series for the binomial f (x) = (1− µx)−1/µ

and introduce factors yn(n−1)/2 as usual:

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

We call Fµ(x , y) the deformed binomial function.

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N that is
the “y -deformation” of the binomial (1 + x/N)N .

Fµ(x , y) =
∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

Can prove that

−x0(y ;µ) = 1 +
∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients
and dn are explicit integers.

Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven for µ ̸= 1?

Alan Sokal (University College London) Some conjectures concerning the zeros of the deformed exponential functionEremenko70 Fest 20 / 23



The deformed hypergeometric series

Exponential (0F0) and binomial (1F0) are simplest cases of the
hypergeometric series pFq.

Can apply “y -deformation” process to pFq:

pF
∗
q

(
µ1, . . . , µp

ν1, . . . , νq

∣∣∣∣ x , y) =
∞∑
n=0

p∏
i=1

n−1∏
j=0

(1 + jµi )

q∏
i=1

n−1∏
j=0

(1 + jνi )

xn

n!
yn(n−1)/2

Note that setting µp = 0 reduces pF
∗
q to p−1F

∗
q (and likewise for νq).

Empirically the two positivity properties for the deformed binomial
appear to extend to pF

∗
0 (in all the variables µ1, . . . , µp).

But the cases pF
∗
q with q ≥ 1 are different, and I do not yet know the

complete pattern of behavior.
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But the cases pF
∗
q with q ≥ 1 are different, and I do not yet know the

complete pattern of behavior.
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A conjectured big picture

Positivity properties for the leading root ξ0(y):

Positivity of ξ0(y) or 1− 1/ξ0(y) for a fairly large class of series

f (x , y) =
∞∑
n=0

αn x
n yn(n−1)/2

Appears to include deformed hypergeometric pF
∗
0 ,

Rogers–Ramanujan R̃(x , y , q), probably others

Find sufficient conditions on {αn}∞n=0??

Positivity properties for the higher roots ξk(y):

Some positivity for partial theta function and perhaps others
(needs further investigation)

Positivity of all ξk(y) only for deformed exponential??
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A conjectured big picture (bis)

I conjecture that there are four different things going on here:

Positivity properties for ratios ξk(y)/ξk+1(y):

Holds for some unknown class of series f (x , y)

Even for polynomials, class is unknown (cf. Calogero–Moser):
roots should be “not too unevenly spaced”

Class appears to include at least deformed exponential

Needs much further investigation

Analyticity of ξ0(y) or all ξk(y) in unit disc:

Probably holds for deformed exponential and some subclass of LP+

Roots should be “not too unevenly spaced”
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A conjectured big picture (bis)

I conjecture that there are four different things going on here:

Positivity properties for ratios ξk(y)/ξk+1(y):
Holds for some unknown class of series f (x , y)

Even for polynomials, class is unknown (cf. Calogero–Moser):
roots should be “not too unevenly spaced”

Class appears to include at least deformed exponential

Needs much further investigation

These three properties apply to formal power series, not just entire functions.

Analyticity of ξ0(y) or all ξk(y) in unit disc:

Probably holds for deformed exponential and some subclass of LP+

Roots should be “not too unevenly spaced”

Can any of this be proven???
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