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Part 1: Motivation from complex dynamics
Basic definitions

f : C → C is analytic
f n is the nth iterate of f

Definition

The Fatou set (or stable set) is

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}.

The Fatou set is open and z ∈ F (f ) ⇐⇒ f (z) ∈ F (f ).

Definition

The Julia set (or chaotic set) is

J(f ) = C \ F (f ).
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Components of the Fatou set

Let U be a component of the Fatou set (a Fatou component),

and let Un denote the Fatou component containing f n(U).

U is periodic with period p if Up = U and Un ̸= U for
1 ≤ n < p.
U is pre-periodic if Um is periodic for some m ∈ N.
U is a wandering domain if Um ̸= Un for all m ̸= n.

Periodic Fatou components are well understood and there is a
classification essentially due to Fatou and Cremer (1920s).
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The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

The first examples of wandering domains were multiply
connected and were due to Baker in 1976.

Theorem (Baker, 1984)

If U is a multiply connected Fatou
component then

U is a wandering domain
Un+1 surrounds Un, for large n
Un → ∞ as n → ∞.
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Examples of simply connected wandering domains

There are three possible types of orbits of a wandering domain
U containing a point z.

Escaping (f n(z) → ∞)

Wandering attracting domain

f (z) = z + sin z + 2π

Wandering parabolic domain

f (z) = z cos z + 2π
Oscillating ((f n(z)) has bounded and unbounded
subsequences) First examples constructed by Eremenko
and Lyubich (1987) using approximation theory
Bounded ((f n(z)) is bounded)
Not known if these can exist
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Classifying simply connected wandering domains
Distance from boundary

Theorem (Benini + Evdoridou +Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain. Then there
are three possibilities.

A Away For all z ∈ U, f n(z) stays away from ∂Un.
B Bungee For all z ∈ U, there is a subsequence f nk (z) which

converges to ∂Unk and a subsequence which stays away.
C Converges For all z ∈ U, f n(z) converges to ∂Un.
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Classifying simply connected wandering domains
Hyperbolic distances

Theorem (Benini + Evdoridou +Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain and suppose
z,w ∈ U have distinct orbits. Then there are three possibilities.

1 U is contracting: for all such pairs z,w ∈ U,
ρUn(f

n(z), f n(w)) decreases to 0.
2 U is semi-contracting: for all such pairs z,w ∈ U,

ρUn(f
n(z), f n(w)) decreases to c(z,w) > 0.

3 U is eventually isometric: for all such pairs z,w ∈ U,
ρUn(f

n(z), f n(w)) is eventually constant.

We give a new technique which allows us to construct
examples of all 9 possible types of bounded escaping
wandering domains (only 3 types previously known).
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Proof of hyperbolic contraction classification

Pick a base point z0 ∈ U.

Let ϕn : Un → D denote a Riemann mapping with
ϕn(f n(z0)) = 0.
Consider the sequence of inner functions gn = ϕnfϕ−1

n−1.
Show that the rate of contraction depends on the values of
|g′

n(0)| - using techniques of Beardon and Carne.

∞∑
n=0

(1 − |g′
n(0)|) = ∞ ⇐⇒ gn(w) → 0 as n → ∞

for all w ∈ D.
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Part II: Dynamics of inner functions

Definition

An inner function f is a holomorphic self-map of the unit disc
D, defined almost everywhere on the boundary by a radial limit,
mapping points in ∂D to ∂D.

Examples include Blaschke products, that is, products of
Möbius maps eiθ z−a

1−az , and the function f (z) = exp
(
−1+z

1−z

)
.

Aim: extend the classical study of iterates f n of inner functions
to non-autonomous dynamics. Let (fn) be a sequence of inner
functions and consider the sequence (Fn) where
Fn = fn ◦ fn−1 ◦ · · · ◦ f1.
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The Denjoy-Wolff Theorem

Theorem (Denjoy-Wolff Theorem)

Let f : D → D be holomorphic (but not a ‘rotation’ about a
point). Then there exists a unique point p ∈ D (the Denjoy-Wolff
point) such that

f n(z) → p, as n → ∞, for all z ∈ D.

Theorem (BEFRS 2021)

Let Fn : D → D be holomorphic. If there exists z0 ∈ D such that
dist(Fn(z0), ∂D) → 0, then, for all z ∈ D,

|Fn(z)− Fn(z0)| → 0.

Question In this situation, are there boundary points whose
orbits have the same limiting behaviour?
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A dichotomy for iterates of inner functions

Let f : D → D be an inner function with |f n(0)| → 1 as n → ∞.

The dichotomy below follows from results of Aaronson (1978)
and Doering and Mañé (1991)

Theorem (ADM dichotomy)

(a) If
∑

n≥0(1 − |f n(0)|) < ∞, then limn→∞ f n(w) is equal to
the Denjoy-Wolff point for almost all w ∈ ∂D.

(b) If
∑
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Generalising the ADM dichotomy

Part (a) generalises using a similar proof:

Theorem (BEFRS 2024)

Let Fn : D → D be holomorphic with

∞∑
n=0

(1 − |Fn(0)|) < ∞.

Then Fn(ζ)− Fn(0) → 0 as n → ∞ for almost all ζ ∈ ∂D.

Counterexample to part (b): We have examples of
compositions of inner functions such that∑∞

n=0 (1 − |Fn(0)|) = ∞.

Fn(z) → 1 as n → ∞ for almost all z ∈ D.
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A generalisation of part (b) of the ADM dichotomy

Question Does part (b) hold for contracting compositions of
inner functions? (Iterates in part (b) must be contracting.)

Theorem (BEFRS 2024a)

Let fn : D → D be inner functions, let Fn = fn ◦ · · · ◦ f1 and let λn
denote the hyperbolic distortion of fn at Fn−1(0). If∑

n≥0

(1 − λn)(1 − |Fn(0)|) = ∞,

then the orbits Fn(w) are dense in ∂D for almost all w ∈ ∂D.

(Fn) is contracting iff
∑

n≥0(1 − λn) = ∞. Our result holds if the
compositions are sufficiently contracting in relation to the speed
of convergence of orbits to the boundary.
We have examples which show that this condition is sharp:
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Proof of part (b) generalisation

The proof is via proving results on points whose orbits hit
shrinking targets of arcs In ∈ ∂D infinitely often.

1 We want to show that, for any given arc I ⊂ ∂D, the set of
points w ∈ ∂D for which Fn(w) ∈ I for infinitely many n ∈ N
has full measure.

2 We normalise the functions fn by ‘conjugating’ with Möbius
maps to give inner functions gn with gn(0) = 0, gn(1) = 1
and λn = |g′

n(0)|. We put Gn = gn ◦ · · · ◦ g1.
3 The problem now is to show that the set of points w ∈ ∂D

for which Gn(w) ∈ In for infinitely many n ∈ N has full
measure, the arcs (In) form a shrinking target with
|In| ≈ 1 − |Fn(0)|.
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Shrinking target result
BEFRS 2024a

Let gn : D → D be inner functions with gn(0) = 0, |g′
n(0)| = λn.

Let Gn = gn ◦ · · · ◦g1 and (In) be a shrinking target of arcs in ∂D.

∑
n≥0

(1 − λn)|In| = ∞,

implies Gn(w) ∈ In infinitely often, for almost all w ∈ ∂D.∑
n≥0

|In| < ∞,

implies Gn(w) ∈ In infinitely often, for almost no w ∈ ∂D.∑
n≥0

|In| = ∞, but
∑
n≥0

(1 − λn)|In| < ∞,

then examples show either conclusion is possible,
depending on arrangement of the arcs (In).
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Proof of shrinking target result

Theorem (BEFRS 2024a, uniform contraction)

Let Gn = gn ◦ · · · ◦ g1, with gn(0) = 0, |g′
n(0)| ≤ λ < 1.

Let (In) be a shrinking target of arcs in ∂D with
∑

n≥0 |In| = ∞.
Then Gn(w) ∈ In infinitely often, for almost all w ∈ ∂D.

Proof ideas:
We want almost all points to lie in infinitely many G−1

n (In)
|G−1

n (In)| = |In| and so
∑

n≥0 |G
−1
n (In)| = ∞

Use a version of the second Borel-Cantelli lemma together
with a mixing result of Pommerenke

We prove the general result when |g′
n(0)| = λn and∑

n≥0(1 − λn)|In| = ∞ by blocking together groups of gn to give
inner functions of uniform contraction.
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Back to wandering domains

We can transfer shrinking target results to wandering domains.

Suppose z0 is in a wandering domain U, λn is the hyperbolic
distortion of f at f n−1(z0) and θn is the angle between two
geodesic rays from f n(z0) to the boundary of Un.
If ∑

n≥0

(1 − λn)|θn| = ∞,

then, for almost all ζ ∈ ∂U, there are infinitely many n ∈ N for
which f n(ζ) is the endpoint of a geodesic ray in the angle θn.

Application to dense orbits would depend on the geometry of
the domains.
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distortion of f at f n−1(z0) and θn is the angle between two
geodesic rays from f n(z0) to the boundary of Un.
If ∑

n≥0

(1 − λn)|θn| = ∞,

then, for almost all ζ ∈ ∂U, there are infinitely many n ∈ N for
which f n(ζ) is the endpoint of a geodesic ray in the angle θn.

Application to dense orbits would depend on the geometry of
the domains.



Happy Birthday Alex!


