Shrinking targets and recurrent behaviour for forward compositions of inner functions

Gwyneth Stallard The Open University

Joint with Anna Miriam Benini, Vasiliki Evdoridou, Nuria Fagella and Phil Rippon

ICMS July 2024

Collaborators

A B > A B >

- $f : \mathbb{C} \to \mathbb{C}$ is analytic
- fⁿ is the *n*th iterate of f

- $f : \mathbb{C} \to \mathbb{C}$ is analytic
- fⁿ is the *n*th iterate of f

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

- $f : \mathbb{C} \to \mathbb{C}$ is analytic
- fⁿ is the *n*th iterate of f

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

The Fatou set is *open* and $z \in F(f) \iff f(z) \in F(f)$.

- $f : \mathbb{C} \to \mathbb{C}$ is analytic
- fⁿ is the *n*th iterate of f

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

The Fatou set is *open* and $z \in F(f) \iff f(z) \in F(f)$.

Definition

The Julia set (or chaotic set) is

$$J(f) = \mathbb{C} \setminus F(f).$$

Let *U* be a component of the Fatou set (a Fatou component),

• *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.

- *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.
- *U* is **pre-periodic** if U_m is periodic for some $m \in \mathbb{N}$.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

- *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.
- *U* is **pre-periodic** if U_m is periodic for some $m \in \mathbb{N}$.
- *U* is a wandering domain if $U_m \neq U_n$ for all $m \neq n$.

・ コ ト ・ 雪 ト ・ 目 ト ・

- *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.
- *U* is **pre-periodic** if U_m is periodic for some $m \in \mathbb{N}$.
- *U* is a wandering domain if $U_m \neq U_n$ for all $m \neq n$.

Periodic Fatou components are well understood and there is a classification essentially due to Fatou and Cremer (1920s).

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

ж

If f is rational, then f has no wandering domains.

If f is rational, then f has no wandering domains.

The first examples of wandering domains were multiply connected and were due to Baker in 1976.

If f is rational, then f has no wandering domains.

The first examples of wandering domains were multiply connected and were due to Baker in 1976.

イロト 不良 とくほ とくほう 二日

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

• U is a wandering domain

If f is rational, then f has no wandering domains.

The first examples of wandering domains were multiply connected and were due to Baker in 1976.

・ コット (雪) (小田) (コット 日)

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- U is a wandering domain
- U_{n+1} surrounds U_n , for large n
- $U_n \to \infty$ as $n \to \infty$.

If f is rational, then f has no wandering domains.

The first examples of wandering domains were multiply connected and were due to Baker in 1976.

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- U is a wandering domain
- U_{n+1} surrounds U_n , for large n
- $U_n \to \infty$ as $n \to \infty$.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

• Escaping $(f^n(z) \to \infty)$

• Escaping $(f^n(z) \to \infty)$

Wandering attracting domain

 $f(z)=z+\sin z+2\pi$

• Escaping $(f^n(z) \to \infty)$

Wandering attracting domain

$$f(z)=z+\sin z+2\pi$$

Wandering parabolic domain

 $f(z)=z\cos z+2\pi$

• Escaping $(f^n(z) \to \infty)$

Wandering attracting domain

$$f(z)=z+\sin z+2\pi$$

Wandering parabolic domain

$$f(z)=z\cos z+2\pi$$

• **Oscillating** ((*fⁿ*(*z*)) has bounded and unbounded subsequences)

• Escaping $(f^n(z) \to \infty)$

Wandering attracting domain

 $f(z)=z+\sin z+2\pi$

Wandering parabolic domain

 $f(z)=z\cos z+2\pi$

 Oscillating ((fⁿ(z)) has bounded and unbounded subsequences) First examples constructed by Eremenko and Lyubich (1987) using approximation theory

• Escaping $(f^n(z) \to \infty)$

Wandering attracting domain

 $f(z)=z+\sin z+2\pi$

Wandering parabolic domain

 $f(z)=z\cos z+2\pi$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Oscillating ((fⁿ(z)) has bounded and unbounded subsequences) First examples constructed by Eremenko and Lyubich (1987) using approximation theory
- **Bounded** ((*fⁿ*(*z*)) is bounded)

• Escaping $(f^n(z) \to \infty)$

Wandering attracting domain

 $f(z)=z+\sin z+2\pi$

Wandering parabolic domain

 $f(z)=z\cos z+2\pi$

- Oscillating ((fⁿ(z)) has bounded and unbounded subsequences) First examples constructed by Eremenko and Lyubich (1987) using approximation theory
- Bounded ((fⁿ(z)) is bounded) Not known if these can exist

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain. Then there are three possibilities.

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain. Then there are three possibilities.

A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain. Then there are three possibilities.

- A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .
- B **Bungee** For all $z \in U$, there is a subsequence $f^{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away.

イロト 不良 とくほ とくほう 二日

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain. Then there are three possibilities.

- A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .
- B **Bungee** For all $z \in U$, there is a subsequence $f^{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

C Converges For all $z \in U$, $f^n(z)$ converges to ∂U_n .

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

イロト 不良 とくほ とくほう 二日

1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

・ コット (雪) (小田) (コット 日)

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

・ コット (雪) (小田) (コット 日)

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

We give a new technique which allows us to construct examples of all 9 possible types of bounded escaping wandering domains
Classifying simply connected wandering domains Hyperbolic distances

Theorem (Benini + Evdoridou + Fagella + Rippon + S, 2021)

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

We give a new technique which allows us to construct examples of all 9 possible types of bounded escaping wandering domains (only 3 types previously known).

• Pick a base point $z_0 \in U$.

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi_n(f^n(z_0)) = 0.$

(日) (日) (日) (日) (日) (日) (日)

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi_n(f^n(z_0)) = 0.$
- Consider the sequence of inner functions $g_n = \phi_n f \phi_{n-1}^{-1}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi_n(f^n(z_0)) = 0.$
- Consider the sequence of inner functions $g_n = \phi_n f \phi_{n-1}^{-1}$.
- Show that the rate of contraction depends on the values of $|g'_n(0)|$ using techniques of Beardon and Carne.

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi_n(f^n(z_0)) = 0.$
- Consider the sequence of inner functions $g_n = \phi_n f \phi_{n-1}^{-1}$.
- Show that the rate of contraction depends on the values of $|g'_n(0)|$ using techniques of Beardon and Carne.

$$\sum_{n=0}^{\infty} (1 - |g'_n(0)|) = \infty \iff g_n(w) \to 0 \text{ as } n \to \infty$$

< ロ ト < 回 ト < 三 ト < 三 ト 回 の < 0</p>

for all $w \in \mathbb{D}$.

Definition

An **inner function** *f* is a holomorphic self-map of the unit disc \mathbb{D} , defined almost everywhere on the boundary by a radial limit, mapping points in $\partial \mathbb{D}$ to $\partial \mathbb{D}$.

Definition

An **inner function** *f* is a holomorphic self-map of the unit disc \mathbb{D} , defined almost everywhere on the boundary by a radial limit, mapping points in $\partial \mathbb{D}$ to $\partial \mathbb{D}$.

Examples include Blaschke products, that is, products of Möbius maps $e^{i\theta} \frac{z-a}{1-\overline{az}}$,

Definition

An **inner function** *f* is a holomorphic self-map of the unit disc \mathbb{D} , defined almost everywhere on the boundary by a radial limit, mapping points in $\partial \mathbb{D}$ to $\partial \mathbb{D}$.

◆□ ▶ ◆ @ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ≧

Examples include Blaschke products, that is, products of Möbius maps $e^{i\theta} \frac{z-a}{1-az}$, and the function $f(z) = \exp\left(-\frac{1+z}{1-z}\right)$.

Definition

An **inner function** *f* is a holomorphic self-map of the unit disc \mathbb{D} , defined almost everywhere on the boundary by a radial limit, mapping points in $\partial \mathbb{D}$ to $\partial \mathbb{D}$.

Examples include Blaschke products, that is, products of Möbius maps $e^{i\theta} \frac{z-a}{1-az}$, and the function $f(z) = \exp\left(-\frac{1+z}{1-z}\right)$.

Aim: extend the classical study of iterates f^n of inner functions to non-autonomous dynamics.

A B > A B > A B > B
B
A

Definition

An **inner function** *f* is a holomorphic self-map of the unit disc \mathbb{D} , defined almost everywhere on the boundary by a radial limit, mapping points in $\partial \mathbb{D}$ to $\partial \mathbb{D}$.

Examples include Blaschke products, that is, products of Möbius maps $e^{i\theta} \frac{z-a}{1-az}$, and the function $f(z) = \exp\left(-\frac{1+z}{1-z}\right)$.

Aim: extend the classical study of iterates f^n of inner functions to non-autonomous dynamics. Let (f_n) be a sequence of inner functions and consider the sequence (F_n) where $F_n = f_n \circ f_{n-1} \circ \cdots \circ f_1$.

The Denjoy-Wolff Theorem

Theorem (Denjoy-Wolff Theorem)

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic (but not a 'rotation' about a point). Then there exists a unique point $p \in \overline{\mathbb{D}}$ (the Denjoy-Wolff point) such that

 $f^n(z) \to p$, as $n \to \infty$, for all $z \in \mathbb{D}$.

The Denjoy-Wolff Theorem

Theorem (Denjoy-Wolff Theorem)

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic (but not a 'rotation' about a point). Then there exists a unique point $p \in \overline{\mathbb{D}}$ (the Denjoy-Wolff point) such that

 $f^n(z) \to p$, as $n \to \infty$, for all $z \in \mathbb{D}$.

イロト 不良 とくほう 不良 とうほ

Theorem (BEFRS 2021)

Let $F_n : \mathbb{D} \to \mathbb{D}$ be holomorphic.

The Denjoy-Wolff Theorem

Theorem (Denjoy-Wolff Theorem)

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic (but not a 'rotation' about a point). Then there exists a unique point $p \in \overline{\mathbb{D}}$ (the Denjoy-Wolff point) such that

 $f^n(z) \to p$, as $n \to \infty$, for all $z \in \mathbb{D}$.

Theorem (BEFRS 2021)

Let $F_n : \mathbb{D} \to \mathbb{D}$ be holomorphic. If there exists $z_0 \in \mathbb{D}$ such that $\operatorname{dist}(F_n(z_0), \partial \mathbb{D}) \to 0$,

Theorem (Denjoy-Wolff Theorem)

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic (but not a 'rotation' about a point). Then there exists a unique point $p \in \overline{\mathbb{D}}$ (the Denjoy-Wolff point) such that

 $f^n(z) \to p$, as $n \to \infty$, for all $z \in \mathbb{D}$.

Theorem (BEFRS 2021)

Let $F_n : \mathbb{D} \to \mathbb{D}$ be holomorphic. If there exists $z_0 \in \mathbb{D}$ such that $\operatorname{dist}(F_n(z_0), \partial \mathbb{D}) \to 0$, then, for all $z \in \mathbb{D}$,

$$|F_n(z)-F_n(z_0)|\to 0.$$

・ コット (雪) (小田) (コット 日)

Theorem (Denjoy-Wolff Theorem)

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic (but not a 'rotation' about a point). Then there exists a unique point $p \in \overline{\mathbb{D}}$ (the Denjoy-Wolff point) such that

 $f^n(z) \to p$, as $n \to \infty$, for all $z \in \mathbb{D}$.

Theorem (BEFRS 2021)

Let $F_n : \mathbb{D} \to \mathbb{D}$ be holomorphic. If there exists $z_0 \in \mathbb{D}$ such that $\operatorname{dist}(F_n(z_0), \partial \mathbb{D}) \to 0$, then, for all $z \in \mathbb{D}$,

 $|F_n(z)-F_n(z_0)|\to 0.$

Question In this situation, are there boundary points whose orbits have the same limiting behaviour?

A dichotomy for iterates of inner functions

Let $f : \mathbb{D} \to \mathbb{D}$ be an inner function with $|f^n(0)| \to 1$ as $n \to \infty$.

Theorem (ADM dichotomy)

(a) If $\sum_{n\geq 0}(1-|f^n(0)|) < \infty$, then $\lim_{n\to\infty} f^n(w)$ is equal to the Denjoy-Wolff point for almost all $w \in \partial \mathbb{D}$.

Theorem (ADM dichotomy)

(a) If $\sum_{n\geq 0}(1-|f^n(0)|) < \infty$, then $\lim_{n\to\infty} f^n(w)$ is equal to the Denjoy-Wolff point for almost all $w \in \partial \mathbb{D}$.

(b) If $\sum_{n\geq 0}(1-|f^n(0)|) = \infty$, then the iterates $f^n(w)$ are dense in $\partial \mathbb{D}$ for almost all $w \in \partial \mathbb{D}$.

Theorem (ADM dichotomy)

(a) If $\sum_{n\geq 0}(1-|f^n(0)|) < \infty$, then $\lim_{n\to\infty} f^n(w)$ is equal to the Denjoy-Wolff point for almost all $w \in \partial \mathbb{D}$.

(b) If $\sum_{n\geq 0}(1-|f^n(0)|) = \infty$, then the iterates $f^n(w)$ are dense in $\partial \mathbb{D}$ for almost all $w \in \partial \mathbb{D}$.

Proof of part (a) based on Löwner's lemma and the *first* Borel-Cantelli lemma.

Part (a) generalises using a similar proof:

Generalising the ADM dichotomy

Part (a) generalises using a similar proof:

Theorem (BEFRS 2024)

Let $F_n : \mathbb{D} \to \mathbb{D}$ be holomorphic with

$$\sum_{n=0}^{\infty}\left(1-|F_n(0)|\right)<\infty.$$

Then $F_n(\zeta) - F_n(0) \to 0$ as $n \to \infty$ for almost all $\zeta \in \partial \mathbb{D}$.

Part (a) generalises using a similar proof:

Theorem (BEFRS 2024)

Let $F_n : \mathbb{D} \to \mathbb{D}$ be holomorphic with

$$\sum_{n=0}^{\infty}\left(1-|F_n(0)|\right)<\infty.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

Then $F_n(\zeta) - F_n(0) \to 0$ as $n \to \infty$ for almost all $\zeta \in \partial \mathbb{D}$.

Counterexample to part (b): We have examples of compositions of inner functions such that

•
$$\sum_{n=0}^{\infty} (1 - |F_n(0)|) = \infty.$$

Part (a) generalises using a similar proof:

Theorem (BEFRS 2024)

Let $F_n : \mathbb{D} \to \mathbb{D}$ be holomorphic with

$$\sum_{n=0}^{\infty}\left(1-|F_n(0)|\right)<\infty.$$

Then $F_n(\zeta) - F_n(0) \to 0$ as $n \to \infty$ for almost all $\zeta \in \partial \mathbb{D}$.

Counterexample to part (b): We have examples of compositions of inner functions such that

•
$$\sum_{n=0}^{\infty} (1 - |F_n(0)|) = \infty.$$

• $F_n(z) \to 1$ as $n \to \infty$ for almost all $z \in \overline{\mathbb{D}}$.

A generalisation of part (b) of the ADM dichotomy

A generalisation of part (b) of the ADM dichotomy

Question Does part (b) hold for *contracting* compositions of inner functions?

A generalisation of part (b) of the ADM dichotomy

Question Does part (b) hold for *contracting* compositions of inner functions? (Iterates in part (b) must be contracting.)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem (BEFRS 2024a)

Let $f_n : \mathbb{D} \to \mathbb{D}$ be inner functions, let $F_n = f_n \circ \cdots \circ f_1$ and let λ_n denote the hyperbolic distortion of f_n at $F_{n-1}(0)$.

Theorem (BEFRS 2024a)

Let $f_n : \mathbb{D} \to \mathbb{D}$ be inner functions, let $F_n = f_n \circ \cdots \circ f_1$ and let λ_n denote the hyperbolic distortion of f_n at $F_{n-1}(0)$. If

$$\sum_{n\geq 0}(1-\lambda_n)(1-|F_n(0)|)=\infty,$$

then the orbits $F_n(w)$ are dense in $\partial \mathbb{D}$ for almost all $w \in \partial \mathbb{D}$.

Theorem (BEFRS 2024a)

Let $f_n : \mathbb{D} \to \mathbb{D}$ be inner functions, let $F_n = f_n \circ \cdots \circ f_1$ and let λ_n denote the hyperbolic distortion of f_n at $F_{n-1}(0)$. If

$$\sum_{n\geq 0}(1-\lambda_n)(1-|F_n(0)|)=\infty,$$

then the orbits $F_n(w)$ are dense in $\partial \mathbb{D}$ for almost all $w \in \partial \mathbb{D}$.

 (F_n) is contracting iff $\sum_{n\geq 0}(1-\lambda_n)=\infty$.

Theorem (BEFRS 2024a)

Let $f_n : \mathbb{D} \to \mathbb{D}$ be inner functions, let $F_n = f_n \circ \cdots \circ f_1$ and let λ_n denote the hyperbolic distortion of f_n at $F_{n-1}(0)$. If

$$\sum_{n\geq 0}(1-\lambda_n)(1-|F_n(0)|)=\infty,$$

then the orbits $F_n(w)$ are dense in $\partial \mathbb{D}$ for almost all $w \in \partial \mathbb{D}$.

 (F_n) is contracting iff $\sum_{n\geq 0}(1-\lambda_n) = \infty$. Our result holds if the compositions are *sufficiently contracting* in relation to the speed of convergence of orbits to the boundary.

Theorem (BEFRS 2024a)

Let $f_n : \mathbb{D} \to \mathbb{D}$ be inner functions, let $F_n = f_n \circ \cdots \circ f_1$ and let λ_n denote the hyperbolic distortion of f_n at $F_{n-1}(0)$. If

$$\sum_{n\geq 0}(1-\lambda_n)(1-|F_n(0)|)=\infty,$$

then the orbits $F_n(w)$ are dense in $\partial \mathbb{D}$ for almost all $w \in \partial \mathbb{D}$.

 (F_n) is contracting iff $\sum_{n\geq 0}(1-\lambda_n) = \infty$. Our result holds if the compositions are *sufficiently contracting* in relation to the speed of convergence of orbits to the boundary.

We have examples which show that this condition is sharp:

The proof is via proving results on points whose orbits hit **shrinking targets** of arcs $I_n \in \partial \mathbb{D}$ infinitely often.

The proof is via proving results on points whose orbits hit **shrinking targets** of arcs $I_n \in \partial \mathbb{D}$ infinitely often.

 We want to show that, for any given arc *I* ⊂ ∂D, the set of points *w* ∈ ∂D for which *F_n(w)* ∈ *I* for infinitely many *n* ∈ N has full measure.
The proof is via proving results on points whose orbits hit **shrinking targets** of arcs $I_n \in \partial \mathbb{D}$ infinitely often.

- We want to show that, for any given arc *I* ⊂ ∂D, the set of points *w* ∈ ∂D for which *F_n(w)* ∈ *I* for infinitely many *n* ∈ N has full measure.
- 2 We normalise the functions f_n by 'conjugating' with Möbius maps to give inner functions g_n with $g_n(0) = 0$, $g_n(1) = 1$ and $\lambda_n = |g'_n(0)|$. We put $G_n = g_n \circ \cdots \circ g_1$.

The proof is via proving results on points whose orbits hit **shrinking targets** of arcs $I_n \in \partial \mathbb{D}$ infinitely often.

- We want to show that, for any given arc *I* ⊂ ∂D, the set of points *w* ∈ ∂D for which *F_n(w)* ∈ *I* for infinitely many *n* ∈ N has full measure.
- 2 We normalise the functions f_n by 'conjugating' with Möbius maps to give inner functions g_n with $g_n(0) = 0$, $g_n(1) = 1$ and $\lambda_n = |g'_n(0)|$. We put $G_n = g_n \circ \cdots \circ g_1$.
- 3 The problem now is to show that the set of points $w \in \partial \mathbb{D}$ for which $G_n(w) \in I_n$ for infinitely many $n \in \mathbb{N}$ has full measure,

The proof is via proving results on points whose orbits hit **shrinking targets** of arcs $I_n \in \partial \mathbb{D}$ infinitely often.

- We want to show that, for any given arc *I* ⊂ ∂D, the set of points *w* ∈ ∂D for which *F_n(w)* ∈ *I* for infinitely many *n* ∈ N has full measure.
- 2 We normalise the functions f_n by 'conjugating' with Möbius maps to give inner functions g_n with $g_n(0) = 0$, $g_n(1) = 1$ and $\lambda_n = |g'_n(0)|$. We put $G_n = g_n \circ \cdots \circ g_1$.
- 3 The problem now is to show that the set of points $w \in \partial \mathbb{D}$ for which $G_n(w) \in I_n$ for infinitely many $n \in \mathbb{N}$ has full measure, the arcs (I_n) form a shrinking target with $|I_n| \approx 1 - |F_n(0)|$.

Let $g_n : \mathbb{D} \to \mathbb{D}$ be inner functions with $g_n(0) = 0$, $|g'_n(0)| = \lambda_n$. Let $G_n = g_n \circ \cdots \circ g_1$ and (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$.

(日) (日) (日) (日) (日) (日) (日)

Let $g_n : \mathbb{D} \to \mathbb{D}$ be inner functions with $g_n(0) = 0$, $|g'_n(0)| = \lambda_n$. Let $G_n = g_n \circ \cdots \circ g_1$ and (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$.

$$\sum_{n\geq 0} (1-\lambda_n) |I_n| = \infty,$$

implies $G_n(w) \in I_n$ infinitely often, for almost all $w \in \partial \mathbb{D}$.

Let $g_n : \mathbb{D} \to \mathbb{D}$ be inner functions with $g_n(0) = 0$, $|g'_n(0)| = \lambda_n$. Let $G_n = g_n \circ \cdots \circ g_1$ and (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$.

$$\sum_{n\geq 0} (1-\lambda_n) |I_n| = \infty,$$

implies $G_n(w) \in I_n$ infinitely often, for almost all $w \in \partial \mathbb{D}$.

$$\sum_{n\geq 0}|I_n|<\infty,$$

implies $G_n(w) \in I_n$ infinitely often, for almost no $w \in \partial \mathbb{D}$.

Let $g_n : \mathbb{D} \to \mathbb{D}$ be inner functions with $g_n(0) = 0$, $|g'_n(0)| = \lambda_n$. Let $G_n = g_n \circ \cdots \circ g_1$ and (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$.

$$\sum_{n\geq 0} (1-\lambda_n) |I_n| = \infty,$$

implies $G_n(w) \in I_n$ infinitely often, for almost all $w \in \partial \mathbb{D}$.

 $\sum_{n\geq 0} |I_n| < \infty,$

implies $G_n(w) \in I_n$ infinitely often, for almost no $w \in \partial \mathbb{D}$.

۲

$$\sum_{n\geq 0} |I_n| = \infty, \text{ but } \sum_{n\geq 0} (1-\lambda_n)|I_n| < \infty,$$

then examples show either conclusion is possible, depending on arrangement of the arcs (I_n) .

Proof of shrinking target result

Theorem (BEFRS 2024a, uniform contraction)

Let $G_n = g_n \circ \cdots \circ g_1$, with $g_n(0) = 0$, $|g'_n(0)| \le \lambda < 1$.

Let $G_n = g_n \circ \cdots \circ g_1$, with $g_n(0) = 0$, $|g'_n(0)| \le \lambda < 1$. Let (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$ with $\sum_{n>0} |I_n| = \infty$.

Let $G_n = g_n \circ \cdots \circ g_1$, with $g_n(0) = 0$, $|g'_n(0)| \le \lambda < 1$. Let (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$ with $\sum_{n \ge 0} |I_n| = \infty$. Then $G_n(w) \in I_n$ infinitely often, for almost all $w \in \partial \mathbb{D}$.

Proof ideas:

• We want almost all points to lie in infinitely many $G_n^{-1}(I_n)$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Let $G_n = g_n \circ \cdots \circ g_1$, with $g_n(0) = 0$, $|g'_n(0)| \le \lambda < 1$. Let (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$ with $\sum_{n \ge 0} |I_n| = \infty$. Then $G_n(w) \in I_n$ infinitely often, for almost all $w \in \partial \mathbb{D}$.

Proof ideas:

• We want almost all points to lie in infinitely many $G_n^{-1}(I_n)$

・ロット (口) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)))

• $|G_n^{-1}(I_n)| = |I_n|$ and so $\sum_{n \ge 0} |G_n^{-1}(I_n)| = \infty$

Let $G_n = g_n \circ \cdots \circ g_1$, with $g_n(0) = 0$, $|g'_n(0)| \le \lambda < 1$. Let (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$ with $\sum_{n \ge 0} |I_n| = \infty$. Then $G_n(w) \in I_n$ infinitely often, for almost all $w \in \partial \mathbb{D}$.

Proof ideas:

- We want almost all points to lie in infinitely many $G_n^{-1}(I_n)$
- $|G_n^{-1}(I_n)| = |I_n|$ and so $\sum_{n \ge 0} |G_n^{-1}(I_n)| = \infty$
- Use a version of the second Borel-Cantelli lemma together with a mixing result of Pommerenke

Let $G_n = g_n \circ \cdots \circ g_1$, with $g_n(0) = 0$, $|g'_n(0)| \le \lambda < 1$. Let (I_n) be a shrinking target of arcs in $\partial \mathbb{D}$ with $\sum_{n \ge 0} |I_n| = \infty$. Then $G_n(w) \in I_n$ infinitely often, for almost all $w \in \partial \mathbb{D}$.

Proof ideas:

- We want almost all points to lie in infinitely many $G_n^{-1}(I_n)$
- $|G_n^{-1}(I_n)| = |I_n|$ and so $\sum_{n \ge 0} |G_n^{-1}(I_n)| = \infty$
- Use a version of the second Borel-Cantelli lemma together with a mixing result of Pommerenke

We prove the general result when $|g'_n(0)| = \lambda_n$ and $\sum_{n\geq 0} (1-\lambda_n)|I_n| = \infty$ by blocking together groups of g_n to give inner functions of uniform contraction.

Suppose z_0 is in a wandering domain U,

Suppose z_0 is in a wandering domain U, λ_n is the hyperbolic distortion of f at $f^{n-1}(z_0)$

Suppose z_0 is in a wandering domain U, λ_n is the hyperbolic distortion of f at $f^{n-1}(z_0)$ and θ_n is the angle between two geodesic rays from $f^n(z_0)$ to the boundary of U_n .

Suppose z_0 is in a wandering domain U, λ_n is the hyperbolic distortion of f at $f^{n-1}(z_0)$ and θ_n is the angle between two geodesic rays from $f^n(z_0)$ to the boundary of U_n . If

$$\sum_{n\geq 0} (1-\lambda_n)|\theta_n| = \infty,$$

Suppose z_0 is in a wandering domain U, λ_n is the hyperbolic distortion of f at $f^{n-1}(z_0)$ and θ_n is the angle between two geodesic rays from $f^n(z_0)$ to the boundary of U_n . If

$$\sum_{n\geq 0} (1-\lambda_n) |\theta_n| = \infty,$$

then, for almost all $\zeta \in \partial U$, there are infinitely many $n \in \mathbb{N}$ for which $f^n(\zeta)$ is the endpoint of a geodesic ray in the angle θ_n .

Suppose z_0 is in a wandering domain U, λ_n is the hyperbolic distortion of f at $f^{n-1}(z_0)$ and θ_n is the angle between two geodesic rays from $f^n(z_0)$ to the boundary of U_n . If

$$\sum_{n\geq 0} (1-\lambda_n) |\theta_n| = \infty,$$

then, for almost all $\zeta \in \partial U$, there are infinitely many $n \in \mathbb{N}$ for which $f^n(\zeta)$ is the endpoint of a geodesic ray in the angle θ_n .

Application to dense orbits would depend on the geometry of the domains.

Happy Birthday Alex!

