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Main purpose� �
To propose an ergodic theoretic approach to

Brody curves.� �
Brody curves are one-Lipschitz holomorphic

maps
f : C → CPN .

Main result (very roughly)� �
Brody curves ≈ Axiom A diffeomorphisms.� �



1 What are Brody curves?

f = [f0 : · · · : fN ] : C → CPN : holomorphic.

Define local Lipschitz constant |df |(z) by

|df |2(z) = 1

4π
∆log

(
|f0(z)|2 + · · ·+ |fN (z)|2

)
.

Here ∆ =
∂2

∂x2
+

∂2

∂y2
.



|df |2 = 1
4π∆ log

(
|f0|2 + |f1|2 + · · · + |fN |2

)
.

Geometrically: |df(v)| = |df |(z) × |v|.

� �
f : C → CPN : Brody curve

def⇐⇒ |df | ≤ 1

all over C.� �



Why is this interesting?

Brody (1978) proved that a projective variety is

Kobayashi hyperbolic iff it does not contain any

nonconstant Brody curve.

Shoshichi Kobayashi; from Wikipedia



BN := {f : C → CPN | Brody curve}.

Define a metric on it by

d(f, g) = sup
|z|≤1

dCPN (f(z), g(z)) .

(BN ,d): compact space with group action:

T : C× BN → BN , (a, f(z)) 7→ f(z + a).

Gromov (1999) began to study mean dimension

mdim
(
BN , T

)
.



� �
Mean dimension is the number of parameters

per unit area of C for describing the orbits

of (BN , T )� �

Mikhael Gromov; from Wikipedia



2 What is mean dimension?
(X, d): compact metric space. For ε > 0, a

continuous f : X → Y is called ε-embedding if

Diamf−1(y) < ε for all y ∈ Y .



Define Widimε(X,d) as the minimum integer n

for which ∃ an n-dimension simplicial complex

P and an ε-embedding f : X → P .

Pavel Urysohn; from Wikipedia



Let T : C×X → X be a continuous action. For

R > 0 we define a metric dR on X by

dR(x, y) = sup
|a|≤R

d (T ax, T ay) .

We define mean dimension by

mdim(X,T ) = lim
ε→0

(
lim

R→∞

Widimε(X, dR)

πR2

)
.



3 Brody curves and mean dimension

BN = {f : C → CPN | Brody curve} with the

group action T : C× BN → BN .

Based on a result of Eremenko, Gromov proved

mdim
(
BN , T

)
≤ 4N.

It had been an open problem to improve this

estimate.



For a Brody curve f : C → CPN , define its

energy density by

ρ(f) := lim
R→∞

(
1

πR2
sup
a∈C

∫
|z−a|<R

|df |2 dxdy

)
.

Set
ρ(CPN ) := sup

f∈BN

ρ(f).

It is known:

0 < ρ(CPN ) < 1, lim
N→∞

ρ(CPN ) = 1.



Theorem (Matsuo–T. 2015, T. 2018)� �
The mean dimension of the system of Brody

curves is given by

mdim
(
BN , T

)
= 2(N + 1)ρ(CPN ).� �

Shinichiroh Matsuo; from his homepage



Problem� �
Can we understand the formula

mdim
(
BN , T

)
= 2(N + 1)ρ(CPN )

in terms of invariant probability measures?� �



4 Invariant probability measures on BN

We study T -invariant probability measures µ on

BN . Here µ: T -invariant if µ(T−aA) = µ(A)

for all Borel sets A ⊂ BN and a ∈ C.

Example 1. Let L� 1 and a� 1. Set

Λ = ZL+Z
√
−1L, D = {u ∈ C | |u−a| ≤ 1}.

For w ∈ [0, L]2 and u = (uλ)λ ∈ DΛ, define

fw,u(z) :=
∑
λ∈Λ

uλ
(z − w − λ)3

∈ B1.



We independently choose w and uλ (λ ∈ Λ)

from the uniform distributions of [0, L]2 and D

respectively. Then

fw,u(z) =
∑
λ∈Λ

uλ
(z − w − λ)3

becomes a random function. Its distribution is

translation-invariant. So it defines a T -invariant

probability measure µ on B1.

In general, invariant probability measures on BN

correspond to such random Brody curves.



Define M T
(
BN
)
as the space of all T -invariant

Borel probability measures on BN .� �
We try to express both sides of

mdim
(
BN , T

)
= 2(N + 1)ρ(CPN )

in terms of µ ∈ M T
(
BN
)
.� �



Recall ρ(CPN ) = supf∈BN ρ(f) where

ρ(f) = lim
R→∞

1

πR2
sup
a∈C

∫
|z−a|<R

|df |2 dxdy.

Define ψ : BN → R by

ψ(f) = 2(N + 1)|df |2(0).

We have:

2(N + 1)ρ(CPN ) = sup
µ∈MT (BN )

∫
BN

ψ dµ.



What is the integral
∫
BN ψ dµ?

For f : C → CPN , define

T (R, f) =

∫ R

1

(∫
|z|<r

|df |2 dxdy

)
dr

r
.

Let µ ∈ M T (BN ) be an ergodic measure. Then

for µ-a.e. f ∈ BN

T (R, f) =
πR2

4(N + 1)

∫
BN

ψ dµ+ o(R2).



mdim(BN , T ) = 2(N + 1)ρ(CPN ) becomes

mdim
(
BN , T

)
= sup

µ∈MT (BN )

∫
BN

ψ dµ.

Next we relate L.H.S. to rate distortion theory.

Claude Shannon; from Wikipedia



5 Rate distortion dimension
BN has metric d(f, g) = sup

|z|≤1

dCPN (f(z), g(z)).

Let µ ∈ M T (BN ), and randomly choose

f ∈ BN according to µ. For ε > 0, we define

the rate distortion function R(d, µ, ε) as the

minimum bits per unit area of C for describing f

within average distortion bounded by ε.

Roughly, R(d, µ, ε) is the entropy rate of the

process f up to error < ε.



We define rate distortion dimension by

rdim
(
BN , T,d, µ

)
= lim sup

ε→0

R(d, µ, ε)

log(1/ε)
.

Tsutomu Kawabata
from homepage

Amir Dembo
from homepage



Variational principle (Lindenstrauss–T.)� �
mdim(BN , T ) = sup

µ∈MT (BN )

rdim(BN , T,d, µ)

� �

Elon Lindenstrauss and Benjamin Weiss and myself



Now the formula

mdim(BN , T ) = 2(N + 1)ρ(CPN )

becomes

sup
µ∈MT (BN )

rdim(BN , T,d, µ) = sup
µ∈MT (BN )

∫
BN

ψ dµ,

where ψ is defined by ψ(f) = 2(N + 1)|df |2(0).



6 Main results
We have

sup
µ∈MT (BN )

rdim(BN , T,d, µ) = sup
µ∈MT (BN )

∫
BN

ψ dµ.

Question� �
What is a relation between rate distortion

dimension rdim(BN , T,d, µ) and
∫
BN ψ dµ

for each µ ∈ M T (BN )?� �



Example 2. Let Λ = ZL+ ZL
√
−1 with

L� 1. Let f : C → CPN be a Λ-periodic

Brody curve, e.g. Weierstrass’℘ function. The

orbit of f is a periodic orbit in BN . Let µ be the

uniform measure on it. Then

rdim(BN , T,d, µ) = 0,∫
BN

ψ dµ =
2(N + 1)

L2

∫
[0,L]2

|df |2 dxdy.



Example 3. Let L� 1 and a� 1. Let

µ ∈ M T (B1) be the distribution of the random

function ∑
λ∈ZL+ZL

√
−1

uλ
(z − w − λ)3

∈ B1,

where w and uλ are independently and

uniformly chosen from [0, L]2 and {|u− a| ≤ 1}.

rdim(BN , T,d, µ) =
2

L2
,

∫
B1

ψ dµ =
12

L2
.



Main Theorem 1� �
For any µ ∈ M T (BN ), we have

rdim
(
BN , T,d, µ

)
≤
∫
BN

ψ dµ.� �
We will see that this is analogous to Ruelle

inequality of smooth ergodic theory. So we call

this “Ruelle inequality for Brody curves”.



Main Theorem 2� �
For any 0 ≤ c < 2(N + 1)ρ(CPN ), there

exists µ ∈ M T (BN ) satisfying

rdim
(
BN , T,d, µ

)
=

∫
BN

ψ dµ = c.� �
Main Theorems 1 and 2 immediately imply

sup
µ∈MT (BN )

rdim(BN , T,d, µ) = sup
µ∈MT (BN )

∫
BN

ψ dµ.



7 Axiom A diffeomorphisms

The proofs of Main Theorems 1 and 2 are

motivated by the thermodynamic formalism for

Axiom A diffeomorphisms. So we review it.

Yakov Sinai, David Ruelle and Rufus Bowen from Wikipedia.



M : compact Riemannian manifold with Axiom

A diffeomorphism T : M →M . (Nonwandering

set is hyperbolic and periodic points are dense in

it.) Let Ω be a basic set of T , and let

TxM = Es
x ⊕ Eu

x (x ∈ Ω)

splitting into stable and unstable directions.

Example 4. M = R2/Z2 with T (x, y) = (x+ y, x).

Then Ω =M , and R2 = R
(

1−
√

5
2

, 1
)
⊕ R

(
1+

√
5

2
, 1

)
provides stable and unstable directions.



Define ϕ : Ω → R by

ϕ(x) = log |det (dTx : Eu
x → Eu

Tx)| .

A fundamental result is:

sup
µ∈MT (Ω)

(
hµ(T )−

∫
Ω

ϕdµ

)
= PT (−ϕ) ≤ 0.

Then, (a special case of) Ruelle inequality follows:

hµ(T ) ≤
∫
Ω

ϕdµ (∀µ ∈ M T (Ω)).



Moreover, if Ω is an attractor, then

sup
µ∈MT (Ω)

(
hµ(T )−

∫
Ω

ϕdµ

)
= PT (−ϕ) = 0,

and ∃µ ∈ M T (Ω) attaining the supremum.

This µ is called SRB measure. It satisfies

hµ(T ) =

∫
Ω

ϕdµ.



8 Mean dimension with potential

(X, d): compact metric space with a continuous

function φ : X → R. Define

Widimε(X, d, φ)

= inf
P :simplicial complex

f : X→P :ε-embedding

{
max
x∈X

(
dimf(x) P + φ(x)

)}
.

Here dimf(x) P is the local dimension of P

around f(x).



Let T : C×X → X be a continuous actions.
For R > 0, define new metric dR and function
φR on X by

dR(x, y) = sup
|a|≤R

d (Tax, Tay) ,

φR(x) =

∫
|a|≤R

φ(Tax) da1da2.

We define mean dimension with potential by

mdim (X,T, φ) = lim
ε→0

(
lim

R→∞

Widimε (X, dR, φR)

πR2

)
.



9 Proofs of main theorems
BN is the space of Brody curves f : C → CPN

with a natural action T : C× BN → BN . We

introduced a metric d(f, g) = sup
|z|≤1

dCPN (f(z), g(z))

and a function ψ(f) = 2(N + 1)|df |2(0).
A fundamental equation is:

sup
µ∈MT (BN )

(
rdim(BN , T,d, µ)−

∫
BN

ψ dµ

)
= mdim(BN , T,−ψ) = 0.



Then we have an analogy of Ruelle inequality:

rdim(BN , T,d, µ) ≤
∫
BN

ψ dµ, (∀µ ∈ M T (BN )).

This proves Main Theorem 1. Moreover we can

construct plenty of µ ∈ M T (BN ) attaining the

supremum of the fundamental equation, i.e.

satisfying

rdim(BN , T,d, µ) =

∫
BN

ψ dµ.

This provides Main Theorem 2.



Remark 5. There is an important difference

between Axiom A attactors and Brody curves.

In the case of Axiom A attractors, the SRB

measure is unique. However, in the case of

Brody curves, there exist plenty of

µ ∈ M T (BN ) satisfying

rdim(BN , T,d, µ) =

∫
BN

ψ dµ.

It seems that there is no way to select one

distinguished measure for Brody curves.



10 Rate distortion theory (if time permits)

(Ω,P): probability space, ξ : Ω → X and

η : Ω → Y : random variables. We want to

define the mutual information I(ξ; η).

Schematic picture of mutual information I(ξ; η).



Step 1. When X and Y are finite sets,

I(ξ; η) := H(ξ) +H(η)−H(ξ, η).

Step 2. In general

I(ξ; η) := sup
α,β

I (α ◦ ξ;β ◦ η)

where α and β run over all finite measurable

partitions of X and Y respectively.



(X, d): compact metric space. For A ⊂ C with

m(A) <∞, define L1(A,X) as the space of

measurable maps f : A→ X with a metric

D(f, g) :=

∫
A

d (f(u), g(u)) dm(u).

Let T : C×X → X be a continuous action. Let

µ ∈ M T (X) be a T -invariant measure. For

ε > 0, we will define the rate distortion function

R(d, µ, ε).



Let A ⊂ C: bounded with m(A) > 0. We define

R(ε,A) as the infimum of I(ξ; η) where ξ and η

are random variables

• ξ takes values in X according to µ.

• η takes values in L1(A,X) such that

E
(

1

m(A)

∫
A

d (Tuξ, ηu) dm(u)

)
< ε.

Define

R(d, µ, ε) = lim
L→∞

R(ε, [0, L]2)

L2
.



Finally, we define rate distortion dimension by

rdim(X,T, d, µ) = lim sup
ε→0

R(d, µ, ε)

log(1/ε)
.



11 Conclusion
(1) We study invariant probability measures on

the space of Brody curves BN .

(2) They satisfy an inequality analogous to Ruelle

inequality.

(3) ∃ a rich variety of measures attaining equality

in this Ruelle inequality for Brody curves.

Hopefully this is just the tip of iceberg. A bigger

picture is something like “a fusion of hyperbolic

dynamics and geometric analysis”.


