A counterexample to Eremenko's Conjecture

James Waterman

Stony Brook University

July 2, 2024 Classical Function Theory in Modern Mathematics, Edinburgh

Joint work with David Martí-Pete and Lasse Rempe

Basic definitions

- Let $f : \mathbb{C} \to \mathbb{C}$ be analytic.
- Denote by f^n the *n*th iterate of f.
- What happens as $n \to \infty$?

Basic definitions

- Let $f : \mathbb{C} \to \mathbb{C}$ be analytic.
- Denote by f^n the *n*th iterate of f.
- What happens as $n \to \infty$?

Definition

The Fatou set is

 $F(f) = \{z: (f^n) \ \text{ is equicontinuous in some neighborhood of } z\}.$

Basic definitions

- Let $f : \mathbb{C} \to \mathbb{C}$ be analytic.
- Denote by f^n the *n*th iterate of f.
- What happens as $n \to \infty$?

Definition

The Fatou set is

 $F(f) = \{z: (f^n) \ \text{ is equicontinuous in some neighborhood of } z\}.$

Definition

The Julia set is

$$J(f) = \mathbb{C} \setminus F(f).$$

Definition

The escaping set is

$$I(f) = \{ z : f^n(z) \to \infty \text{ as } n \to \infty \}.$$

- I(f) is a neighborhood of ∞ .
- $\partial I(f) = J(f)$.
- $I(f) \subset F(f)$.

Polynomials vs non-polynomials

Polynomials

- J(f) is always bounded
- No wandering domains
- $0 \le \dim J(f) \le 2$
- Description of dynamics of J(f) given by I(f): external rays, etc

Transcendental entire

- J(f) is never bounded
- Wandering domains possible
- dim $J(f) \ge 1$
- Description of dynamics of J(f) given by I(f)??

The escaping set of a transcendental entire function

Definition

The escaping set is

$$I(f) = \{ z : f^n(z) \to \infty \text{ as } n \to \infty \}.$$

- I(f) is not a neighborhood of ∞ .
- I(f) can meet F(f) and J(f).
- Always points in I(f) with different rates of escape.

Observation (Fatou (1926), Devaney (1980s))

I(f) often contains curves tending to ∞ .

Fatou's question

 $c\sin z$

Question (Fatou, 1926) Does I(f) contain curves for "more general" functions? James Waterman (Stony Brook University) Eremenko's Conjecture July 2, 2024

Example: The exponential function

Investigated by Devaney and Tangerman (1986).

- F(f) (white) contains a left half-plane
- J(f) (black) is a "Cantor bouquet of curves"
- *I*(*f*) (black) are these curves without some of the endpoints

 $\frac{1}{4}\exp(z)$

Eremenko's conjectures

Eremenko (1989) showed I(f) has the following properties:

- $I(f) \cap J(f) \neq \emptyset$,
- $\partial I(f) = J(f)$,
- $\overline{I(f)}$ has no bounded components.

The strong Eremenko conjecture (Eremenko, 1989)

Every point of I(f) can be joined to ∞ by a curve of points in I(f).

Eremenko's conjecture (Eremenko, 1989)

All components of I(f) are unbounded.¹

¹ "It is plausible that the set I(f) has no bounded connected components."

James Waterman (Stony Brook University)

Eremenko's Conjecture

Examples: Spider's web

- F(f) is an infinite collection of bounded basins of attraction
- J(f) and I(f) are connected and form "spider's webs"

 $\frac{1}{2}(\cos z^{1/4} + \cosh z^{1/4})$

What is known about the structure of I(f)?

It can be very hard to control the components of the escaping set.

Theorem (Rippon and Stallard, 2011)

 $I(f) \cup \{\infty\}$ is always connected and every bounded component of I(f) meets J(f).

What is known about the structure of I(f)?

It can be very hard to control the components of the escaping set.

Theorem (Rippon and Stallard, 2011)

 $I(f) \cup \{\infty\}$ is always connected and every bounded component of I(f) meets J(f).

Theorem (Rippon and Stallard, 2005, 2014)

 ${\cal I}(f)$ has at least one unbounded component, and moreover ${\cal I}(f)$ is connected or it has infinitely many unbounded components.

The strong version of Eremenko's conjecture

The strong Eremenko conjecture (Eremenko, 1989)

Every point of I(f) can be joined to ∞ by a curve of points in I(f).

The strong version of Eremenko's conjecture

The strong Eremenko conjecture (Eremenko, 1989)

Every point of I(f) can be joined to ∞ by a curve of points in I(f).

Theorem (Rempe, Rottenfußer, Rückert, Schleicher, 2011; Barański, 2007)

There exists a transcendental entire function f such that every path-connected component of J(f) is bounded. However, the strong conjecture does hold for a large class of entire functions. In particular, class \mathcal{B} of finite order.

The strong version of Eremenko's conjecture

The strong Eremenko conjecture (Eremenko, 1989)

Every point of I(f) can be joined to ∞ by a curve of points in I(f).

Theorem (Rempe, Rottenfußer, Rückert, Schleicher, 2011; Barański, 2007)

There exists a transcendental entire function f such that every path-connected component of J(f) is bounded. However, the strong conjecture does hold for a large class of entire functions. In particular, class \mathcal{B} of finite order.

Further counterexamples:

- Bishop (2015): the strong version of Eremenko's conjecture fails for transcendental entire functions with a finite set of singular values
- Rempe (2016): arc-like continua as Julia continua
- Benitez-Rempe (2021): every Julia continuum is a pseudo-arc
- Brown (2024): counterexamples with slow growth

New counterexamples to the strong Eremenko conjecture

Theorem (Martí-Pete, Rempe, W)

Let $K \subseteq \mathbb{C}$ be a continuum with connected complement. Then there exists a transcendental entire function f such that every path-connected component of K is a path-connected component of the escaping set I(f), and every path-connected component of ∂K is a path-connected component of J(f). In particular, no point of K can be connected to ∞ by a curve in I(f).

Counterexamples to Eremenko's conjecture

Eremenko's conjecture (Eremenko, 1989)

All components of I(f) are unbounded.

Counterexamples to Eremenko's conjecture

Eremenko's conjecture (Eremenko, 1989)

All components of I(f) are unbounded.

Theorem (Martí-Pete, Rempe, W)

There exists a transcendental entire function f such that I(f) has a point connected component.

Counterexamples to Eremenko's conjecture

Eremenko's conjecture (Eremenko, 1989)

All components of I(f) are unbounded.

Theorem (Martí-Pete, Rempe, W)

There exists a transcendental entire function f such that I(f) has a point connected component.

Theorem (Martí-Pete, Rempe, W)

Let $X \subset \mathbb{C}$ be a non-empty connected compact set with connected complement. Then there exists a transcendental entire function f such that X is a connected component of I(f).

• What is the *structure* of a possible counterexample?

- What is the *structure* of a possible counterexample?
- How do we *realize* this structure?

- What is the structure of a possible counterexample?
- How do we *realize* this structure?
- Give a new general framework for constructing entire functions having interesting sets of points with unbounded orbits.

Theorem (Arakelyan, 1964)

Let $A\subseteq \mathbb{C}$ be a closed set such that

- $\ \ \, \ \, \widehat{\mathbb{C}}\setminus A \text{ is connected};$
- () $\widehat{\mathbb{C}} \setminus A$ is locally connected at ∞ .

Suppose that $g: A \to \mathbb{C}$ is a continuous function that is holomorphic on int(A). Then for every $\varepsilon > 0$, there exists an entire function f such that

$$|f(z) - g(z)| < \varepsilon$$
 for all $z \in A$.

The structure

The structure

Happy birthday Alex!

James Waterman (Stony Brook University)

Eremenko's Conjecture