The Kervaire Invariant and Stable Homotopy Theory

Home > Workshops > 2011 > The Kervaire Invariant and Stable Homotopy Theory

The Kervaire Invariant and Stable Homotopy Theory

 25 - 29 Apr 2011

ICMS

Scientific Organisers

  • John Greenlees, University of Sheffield
  • Mike Hopkins, Harvard University
  • Andrew Ranicki, University of Edinburgh
  • Neil Strickland, University of Sheffield

About:

The principal objective of the workshop was to disseminate the methods used in the solution of the Kervaire invariant conjecture and the use of equivariant and motivic methods more generally. It also assessed the prospects for using the methods to prove structural results about stable homotopy.

Speakers and their talk titles

Peter Akhmetev, Izmiran - A Geometric Approach to Stable Homotopy Groups of Spheres: The Kervaire Invariant  

Michael Atiyah, University of Edinburgh - The Magic Square and the Kervaire Invariant

Tilman Bauer, University of Amsterdam - The Periodicity Theorem

Robert Bruner, Wayne State University - Classical Approaches to Kervaire Classes 

John Greenlees, University of Sheffield - Equivariant Stable Homotopy Theory and Ordinary Cohomology 

Hans-Werner Henn, Université de Strasbourg - The Chromatic Splitting Conjecture: the Case of the Prime 3 and Chromatic Level 2

Mike Hill, University of Virginia - The Slice Filtration

Michael Hopkins, Harvard University - The Kervaire Invariant: Guide to the Obstructions

John Jones, University of Warwick - The Search for Framed Manifolds with Kervaire Invariant One

Jean Lannes, École Polytechnique - Remakes of Browder's Paper on the Kervaire Invariant

Tyler Lawson, University of Minnesota - Relative Picard and Brauer Groups for S-Algebras

Mark Mahowald, Northwestern University - The Role of KI Classes in Homotopy 

Jack Morava, Johns Hopkins University - HHR's Equivariant Cohomology Theory and Abelian Varieties 

Erik Pedersen, University of Copenhagen - H-Spaces and the Kervaire Invariant

Doug Ravenel, University of Rochester - The Gap Theorem

Doug Ravenel, University of Rochester - Outline of the Proof

Stefan Schwede, University of Bonn - Ultra-Commutative Ring Spectra  

Neil Strickland, University of Sheffield - Tambura Functions

Hal Sadofsky, University of Oregon - The Detection Theorem