Oscillatory Integrals in Harmonic Analysis

Home > Workshops > 2011 > Oscillatory Integrals in Harmonic Analysis

Oscillatory Integrals in Harmonic Analysis

 06 - 10 Jun 2011

ICMS

Scientific Organisers

  • Carlos Kenig, University of Chicago
  • Alexander Nagel, University of Wisconsin
  • Andreas Seeger, University of Wisconsin
  • Jim Wright, University of Edinburgh

About:

This workshop focused on:

  • Oscillatory integrals of Calreson-Sjolin type and related topics

  • Oscillatory and Fourier integral operators with degenerate canonical relations

  • The role of affine invariant measures

  • Uniformity and stability issues for oscillatory integrals, and related problems

  • Fostering interaction and collaboration amongst participants

Speakers and their talk titles

Bill Beckner, University of Texas - Multilinear Fractional Sobolev Embedding 

Jonathan Bennett, University of Birmingham - Weighted Norm Inequalities for a Class of Oscillatory Integrals

Neal Bez, University of Birmingham - Multilinear Radon-Like Transforms  

Anthony Carbery, University of Edinburgh - The Multilinear Kakeya Theorem, Factorisation and Algebraic Topology

Michael Christ, University of California - Extremizers and Near-Extremizers for the Radon Transform  

Antonio Cordoba, Universidad Autonoma de Madrid - Singular Integrals in Fluid Mechanics  

Spyros Dendrinos, University of Jyväskylä - Sharp Uniform $L^p$ Estimates for Local Fourier Restriction to Curves 

Michael Greenblatt, University of Illinois - A Resolution of Singularities Algorithm for Local Fields of Characteristic Zero and Some Applications  

Allan Greenleaf, University of Rochester - Mathematical Foundations of Invisibility Cloaks and Transformation Optics 

Allan Greenleaf, University of Rochester - A Multi-Dimensional Resolution of Singularities with Applications 

Philip Gressman, University of Pennsylvania - Uniform Sublevel Set Estimates and Applications

A.D. Ionescu, Princeton University - On the Local Extension of Killing Vector-Fields in Ricci Flat Manifolds 

Alexander Iosevich, University of Rochester - Sobolev Bounds for Generalized Radon Transforms and Application to Geometric Measure Theory

Sanghyuk Lee, Seoul National University - On Pointwise Convergence of Solutions to the Schrödinger Equations  

Neill Lyall, University of Georgia - Polynomial Patterns in Subsets of the Integers

Akos Magyar, University of British Columbia - Discrete Singular Radon Transforms on Step-2 Nilpotent Groups

Detlef Mueller, University of Kiel - Uniqueness for Schroedinger Equations on Two-Step Nilpotent Groups 

Dan Oberlin, Florida State University - Uniform Convolution and Fourier Restriction Estimates with Affine Measures - a Survey  

Richard Oberlin, Louisiana State University - Variations on the Carleson-Hunt Theorem

Lillian Pierce, University of Oxford - Discrete Fractional Radon Transforms 

Malabika Pramanik, University of British Columbia - An Uncertainty-Type Principle for Salem Measures of Fractional Dimension

Keith Rogers, Instituto de Ciencias Matemáticas - Improved Bounds for Stein's Square Function  

Eli Stein, Princeton University - Cauchy Integrals in for Domains in C^n with Minimal Smoothness

Brian Street, University of Wisconsin - Multiparameter Singular and Fractional Radon Transforms  

Christoph Thiele, University of California - The Twisted Paraproduct and the Triangular Hilbert Transform 

Ana Vargas, Universidad Autonoma de Madrid - About the Born Approximation in Potential Inverse Scattering